Technical Information

1. Terminology of Taps

2. Flutes

- 3. Edge angle and Cutting allowance of taps
- 4. Recommended Tapping Speeds
- 5. Tapping Speed and Revolution
- 6. Tapping Torque
- 7. Metric Thread and Gauge Profile
- 8. Length of engagement
- 9. Classes of Internal Threads and Classes of Taps
- 10. Guide to Thread Forming Taps(Roll Taps)
- 11. How to set the tap's oversize to meet with the coating margin of internal threads
- 12. Recommended bored hole sizes
- 13. Recommended Hole Sizes for Thread Forming Taps
- 14. Bar diameter for external threads(for cutting type dies)
- 15. Bar diameter of external screws(for thread rolling dies)
- 16. Surface Treatment
- 17. Carbide Taps
- 18. Pipe Taps Standard
- 19. Features of MC-Helical Thread Mills
- 20. Selecting different tap holder combinations by machine feed system
- 21 The common mechanics for a tap to cut oversize on an internal thread
- 22. Trouble Shooting
- 23. Center Drills
- 24. Table of recommend centering condition
- 25. Thread Series
- 26. Basic profile of threads
- 27. Symbols for Standard Threads
- 28. Cross chart of thread cutting tool standard
- 29. Hardness conversion table
- 30. Conversion table from inch to millimeter
- 31. Chemical Component table of work materials
- 32. Materials used for Cutting Tools
- 33. Design of taps and dies
- 34. Design of center drills and centering tools
- 35. Design of dies
- 36. Design of taps for USA market and European market

Technical-1 Technical-2 Technical-3 Technical-4 Technical-5 Technical-6 Technical-9 Technical-11 **Technical-13 Technical-18 Technical-20** Technical-21 Technical-27 **Technical-28 Technical-31** Technical-32 Technical-35 **Technical-37 Technical-44 Technical-47 Technical-49 Technical-51 Technical-55 Technical-56** Technical-58 **Technical-60 Technical-62 Technical-65 Technical-66 Technical-67 Technical-69** Technical-79 Technical-81 **Technical-83 Technical-84 Technical-84**

Terminology of Taps

Chamfer relief

Thread relief and cutting angle

Edge angle, including chamfer relief, thread relief, cutting angle and others, and heat treatment, have important functions affecting on workpiece shape, tool life, surface finish of internal screw thread, and so on.

In general, tap chamfer is the most important part of taps to create internal thread. The function of full thread part of taps is to make a guidance.

Major functions of flutes are :

1) Chips' pocket, 2) lubricant supply route, 3) rake angle formation, 4) to determine cutting amount in relation to the number of chamfer threads. And all are very important. Taps' flutes are classified into following groups by tapping methods, fluting method, tapping direction, and hand of screw thread.

Type of Flute

In general, the number of flutes for cutting type taps are usually increased as O.D. becomes larger. However, it is also influenced by tap's strength and regidity, the accomodation of chip, the amount of cutting, and lubricant supply system.

Technical Informatior

Cutting angle and Chamfer relief

Description of products

Tangential Hook Angle

Cutting angle of hook face. The angle between the center line passing the cutting edge and the straight line linking the cutting edge with the thread root.

Cutting angle of rake face. The angle between the center line passing the cutting edge and the straight line linking the cutting edge with thread root.

Rake Angle

Cutting angle of hook face. The angle between the

center line passing the cutting edge and the straight

line tangent to the rake face on the cutting edge.

Land A

The amount of cut portion

Please refer to the pictures shown.

In such taps as have 4 flutes and 3 thread chamfer, the cutting operation progresses in order from the edge of A1, B1, C1, D1...A2, B2...A4. Tap end is usually smaller than the size of bored hole, and A1 may not make any cutting operation.

Tapping Speeds

Following usage conditions affect tapping speeds : kind of taps, workpieces, number of chamfered threads, materials, hole condition and fluid. It is necessary to select the suitable tapping speed by paying attention to these conditions.

When work material has excellent workability, when there is a little depth of tapping, or when tapping fluid can be sufficient, select rather higher tapping speed. When workability of work material is unknown, to be safe, try nearly the lowest tapping speed at first, and then increase the speed gradually.

		Tapping Speed							
Workpied	ce Materials	Spiral Fluted	Spiral Pointed	Roll Taps	Straight Fluted	Cemented Carbide			
Low Carbon Steels	SS400 S10C~S25C	8~15	10~20	8~15	6~10				
Medium Carbon Steels	S25C~S45C	6~12	8~14	7~12	5~9	_			
High Carbon Steels	S45C~S58C	5~10	8~12	5~10	5~8	_			
Alloy Steels	SCM · SNCM	5~10	7~10	5~10	5~8	_			
Heat treated Steels	20~45HRC	3~5	4~7	_	3~6	_			
Stainless Steels	SUS	3~8	4~9	6~15	3~7	_			
Tool Steels	SKD	5~8	6~10	_	5~9	_			
Cast Steels	SC	6~10	8~13	_	6~10	_			
Cast Irons	FC		_	_	12~17	15~25			
Ductile Cast Irons	FCD	5~10	5~10	_	5~8	12~20			
Coppers	Cu	8~12	8~13	25~35	7~11	15~33			
Brass · Brass Casting	Bs · BsC	11~22	13~25	25~35	10~20	23~33			
Phosphor Bronze · Phosphor Bronze Casting	PB · PBC	8~15	10~18	25~35	8~15	18~33			
Wrought Aluminum	AI	15~25	20~25	25~35	15~20	23~40			
Aluminum Alloy Castings	AC · ADC	11~22	12~24	15~25	10~20	15~25			
Magnesium Alloy Castings	MC	7~15	10~20	_	7~15	12~20			
Zinc Alloy Diecastings	ZDC	7~15	10~20	15~25	7~15	12~20			
Thermosetting Plastic	Bakelite (Phenol-PF)	11~17	12~18	-	10~15	15~25			
Thermoplastic resin	PVC, Nylon	11~17	12~18	-	10~15	15~25			
Titanium Alloys	Ti-6Al-4Vetc	6~9	6~9	_	_	_			
Nickel Base Alloys	Hastelloy, Inconel, Waspaloy	3~6	3~6	_	_	_			

Unit:m/min

Description of products

Formula

Tapping Speed (Vc)

$$Vc = \frac{\pi \cdot Dc \cdot n}{1000} (m/min)$$
n : Revolution of tap (min⁻¹)
 π : 3.14
Dc : Nominal dia. of tap (mm)

Revolution of tap (n)

$$n = \frac{1000 \cdot Vc}{\pi \cdot Dc} (min^{-1})$$

Vc : Tapping Speed (m/min) Dc : Nominal dia. of tap (mm) *π*:3.14

5. Tapping speed and Revolution

Conversion table

think threads with 654

6. Tapping Torque

Tapping Torque of Cutting type Taps

The torque starts increasing as the threads of chamfer enter the workpiece material. It becomes highest when all threads of chamfer cut into workpiece material, and is in plateau until the chamfer cuts through the workpiece. After that, the torque will decrease until the end of tapping.

Cutting Torque Line

Cutting torque lines in the test of different kinds of taps, hand tap, spiral fluted tap, spiral pointed tap are shown below.

— Tapping Condition ————	
Tap : HSS P2 M8×1.25	Bored hole size : 6.8mm
Cutting speed : 6.1m/min	Cutting oil : Water insoluble oil
Workpiece material : S50C	Machine : Drilling machine
Tapping type : 10mm Through hole	Measurement equipment: Piezoelectric torque tester

Type of tap		Torque lin es	Description
Hand tap (P2)	Taper tap (9 threads)		Gentle slope is observed because of less cutting by each cutting chamfer, but longer tapping time is taken than in the other hand taps.
	Plug tap (5 threads)		Plateau is observed since whole chamfer threads enter the workpiece material. Tapping time is much shorter than that of the taper tap.
	Bottoming tap (1.5 threads)		Plateu is also observed since whole short chamfer threads enter the workpiece material. Tapping process time is shorter than that of the plug tap.
Spiral fluted tap (P2, 2.5 th	nreads)		Spiral fluted tap pulls out the chips, good choice for blind hole tapping. The cutting torque of spiral fluted taps is smaller than that of the hand taps.
Spiral pointed tap (P2, 5 th	nreads)		Spiral pointed tap pushes out the chips forward. It is good choice for through hole use. Cutting torque is smallest in all taps.

The cutting torque will change depending on the kind of taps, cutting chamfer, number of flutes, workpiece materials and their hardness, lubrication types, and chips.

Comparison of Cutting Torque by Different Type of Taps

Cutting torque of hand tap (HT), and spiral fluted tap (SP), and spiral pointed tap (PO) differs, shown in the chart below.

Tapping Torque of Forming type Taps

Calculation for Tapping Torque of Roll Taps

Olt is hard to calculate tapping torque for roll taps because they contain more complicated factor than the cutting taps.

According to our experience, tapping torque of roll taps is twice or three times larger than that of the cutting taps in general.

 \bigcirc Major factors increasing or decreasing tapping torque of roll taps are :

- (1) Mechanical characteristic of workpiece (Tensile strength, hardness, spring back feature, work hardening index) : As the tensile strength gets larger, the threading torque becomes larger.
- (2) Size and length of bored hole: Bored hole size is usually defined to obtain 75% thread height of basic thread profile. Roll taps may be shuttered due to the excessive tapping torque when the bored hole size is made smaller to obtain higher thread height. Tapping torque gets larger as the efficient length of internal screw becomes longer because there is an increase in friction coefficient caused by spring back of workpiece material.
- (3) Tapping process (tapping speed, lubricant, and rigidity of main spindle).
- (4) Surface treatment of taps (oxidizing, nitriding, TiN, and TiCN coatings).

Description of products

OTapping Torque Equation for Forming Taps

Based on the tensile strength of workpiece material, we prepare following equation to obtain tapping torque of standard formig taps. Condition : Effective length of internal screw is 1.5D,. Thread height is 75%.

Tapping Torque Equation for Forming Taps

$T = Kf \times Dc \times P^2/1000$

- T : Tapping Torque (N-m) Dc : Nominal Diameter of Tap (mm)
- P : Pitch (mm)
- Kf : Deforming resistance (Nmm²)

Workpiece Materials	Deforming resistance (N/mm²)
General Structure Steels, Low Carbon Steels	750~850
Medium Carbon Steels, Alloy Steels	1150~1350
Stainless Steels	1100~1300
Wrought Aluminum	250~350
Aluminum Die castings	380~530
Coppers, Wrought Copper Alloys	750~1050

Metric Thread and Gauge Profile

Relation of tolerance position between screw thread classes and thread gauge classes in ISO(new JIS) and old JIS standard.

Think threads with X YAMAWA

Internal threads and Limit gauges for internal threads Example : ISO M10×1.5/6H and old JIS M10×1.5/Class 2 Gauge for Pitch Dia. of internal thread

JIS B 0251-1975 Limit gauges for metric coarse threads Appendix

JIS B 0253-1985 Gauge for taper pipe threads

JIS B 0255-1975 Limit gauge for unified coarse threads

JIS B 0252-1996 Limit gauge for metric fine threads

JIS B 0254-1985 Gauge for parallel pipe threads

JIS B 0256-1975 Limit gauge for unified fine threads, Appendix

Technical

659

Length of engagement

Thread tolerance class is chosen in consideration of "engagement classification" and "engagement length". To realize the stable tapping, it is necessary to fully understand the relation between these factors and to choose the suitable tolerance class.

On "engagement calssification : middle", the tolerance class 6H is almost always chosen for standard internal threads. However, in case of "engagement length : L", tolerance class 7H can also be chosen.

On M12x1.75, the tolerance of 7H is 25% (50µm) larger than that of 6H. And this widens the selection range of the tolerance class for taps to customer's advantage.

[M12x1.75]

6H Pitch diameter : 10.863 ~ 11.063mm (tolerance 0.200 mm) 7H Pitch diameter : 10.863 ~ 11.113mm (tolerance 0.250 mm)

1) Engagement classification

classification	application
fine	precise screw threads with a little allowance
middle	standard screw threads used for machines, apparatuses and constructions bodies
coarse	screw threads used for construction and building installation, and screw threads for which threading operation is very difficult such as threading of hot rolled steel bars.

2) Classification of engagement length

symbol	classification	limit size
S	short	up to and including 2.24Pd ^{0.2}
Ν	normal	over 2.24Pd ^{0.2} up to and including 6.7Pd ^{0.2}
L	long	over 6.7Pd ^{0.2}

3) Selection rule of internal threads and external threads Selection rule of the tolerance class of internal threads

tolerance position	Н					
engagement length engagement classification	S	Ν	L			
fine	4H	5H	6H			
middle	5H	6H	7H			
coarse	-	7H	8H			

Selection rule of the tolerance class of external threads

tolerance position		h				
engagement length engagement classification	S	Ν	L	S	Ν	L
fine	(3h4h)	4h	(5h4h)	-	-	-
middle	(5h6h)	6h	(7h6h)	(5g6g)	6g	(7g6g)
coarse	-	-	-	-	8g	(9g8g)

8. Length of engagement

Description of products

4) engagement length

		S		Ν				S		N	L	
size	pitch	up to and including	over	up to and	over	size	pitch	up to and including	over	up to and including	ove	
M1	0.25	0.6	0.6	1.7	1.7	M10	1.5	5	5	15	15	
VI1	0.2	0.5	0.5	1.4	1.4	M10	1.25	4	4	12	12	
M1.1	0.25	0.6	0.6	1.7	1.7	M10	1	3	3	9	9	
M1.1	0.2	0.5	0.5	1.4	1.4	M10	0.75	2.4	2.4	7.1	7.	
M1.2	0.25	0.6	0.6	1.7	1.7	M11	1.5	5	5	15	15	
M1.2	0.2	0.5	0.5	1.4	1.4	M11	1	3	3	9	9	
M1.4	0.3	0.7	0.7	2	2	M11	0.75	2.4	2.4	7.1	7.	
M1.4	0.2	0.5	0.5	1.4	1.4	M12	1.75	6	6	18	18	
M1.6	0.35	0.8	0.8	2.6	2.6	M12	1.5	5.6	5.6	16	16	
M1.6	0.2	0.5	0.5	1.5	1.5	M12	1.25	4.5	4.5	13	13	
M1.8	0.35	0.8	0.8	2.6	2.6	M12	1	3.8	3.8	11	11	
M1.8	0.2	0.5	0.5	1.5	1.5	M14	2	8	8	24	24	
M2	0.4	1	1	3	3	M14	1.5	5.6	5.6	16	16	
M2	0.25	0.6	0.6	1.9	1.9	M14	1	3.8	3.8	11	11	
M2.2	0.45	1.3	1.3	3.8	3.8	M15	1.5	5.6	5.6	16	16	
M2.2	0.25	0.6	0.6	1.9	1.9	M15	1	3.8	3.8	11	11	
M2.5	0.45	1.3	1.3	3.8	3.8	M16	2	8	8	24	24	
M2.5	0.35	0.8	0.8	2.6	2.6	M16	1.5	5.6	5.6	16	16	
МЗ	0.5	1.5	1.5	4.5	4.5	M16	1	3.8	3.8	11	11	
МЗ	0.35	1	1	3	3	M17	1.5	5.6	5.6	16	16	
M3.5	0.6	1.7	1.7	5	5	M17	1	3.8	3.8	11	11	
M3.5	0.35	1	1	3	3	M18	2.5	10	10	30	30	
M4	0.7	2	2	6	6	M18	2	8	8	24	24	
M4	0.5	1.5	1.5	4.5	4.5	M18	1.5	5.6	5.6	16	16	
M4.5	0.75	2.2	2.2	6.7	6.7	M18	1	3.8	3.8	11	11	
M4.5	0.5	1.5	1.5	4.5	4.5	M20	2.5	10	10	30	30	
M5	0.8	2.5	2.5	7.5	7.5	M20	2	8	8	24	24	
M5	0.5	1.5	1.5	4.5	4.5	M20	1.5	5.6	5.6	16	16	
M5.5	0.5	1.5	1.5	4.5	4.5	M20	1	3.8	3.8	11	11	
M6	1	3	3	9	9	M22	2.5	10	10	30	30	
M6	0.75	2.4	2.4	7.1	7.1	M22	2	8	8	24	24	
M7	1	3	3	9	9	M22	1.5	5.6	5.6	16	16	
M7	0.75	2.4	2.4	7.1	7.1	M22	1	3.8	3.8	11	11	
M8	1.25	4	4	12	12	M24	3	12	12	36	36	
M8	1	3	3	9	9	M24	2	8.5	8.5	25	25	
M8	0.75	2.4	2.4	7.1	7.1	M24	1.5	6.3	6.3	19	19	
M9	1.25	4	4	12	12	M24	1	4	4	12	12	
М9	1	3	3	9	9			1	I		l	
M9	0.75	2.4	2.4	7.1	7.1							

1. YAMAWA P Class System

YAMAWA P Class system for thread limits is specified in accordance with JSCTA (The Japan Solid Cutting Tools' Association). Pitch diameter tolerance zone for normal size M1~M52 (U,W up to 2") are shown in the table below. Depending on pitch diameter tolerance and tolerance position, pitch diameter tolerance zones are classified into three types, A, B and C.

(1) A type : 15µm tolerance. The tolerance of P1, P2, P3... is defined as basic +10~+25µm, +25~+40µm, +40~+55µm and so on, respectively. (2) B type : 20µm tolerance. The tolerance of P1, P2, P3... is defined as basic +0~+20µm, +20~+40µm, +40~+60µm and so on, respectively. (3) C type : 40μ m tolerance. The tolerance of P2, P3, P4... is defined as basic $+0 \rightarrow +40\mu$ m, $+20 \rightarrow +60\mu$ m, $+40 \rightarrow +80\mu$ m and so on, respectively. YAMAWA P class system is made in a step form. It can be used to select depending on the tapping conditions.

Pitch Tolerance zone for P Class with Nominal size and Pitch

Nominal Size Pitch	1mm≦Size≦24mm (7/8)	24mm (7/8) < Size≦30mm	30mm (11/4)≤Size≦52mm (2)
≦0.6mm	A type	B type	B type
0.6mm <pitch≦1.75mm< th=""><th>B type</th><th>B type</th><th>B type</th></pitch≦1.75mm<>	B type	B type	B type
1.75mm <pitch≦2mm< th=""><th>B type</th><th>B type</th><th>C type</th></pitch≦2mm<>	B type	B type	C type
2mm <pitch≦5mm< th=""><th>B type</th><th>C type</th><th>C type</th></pitch≦5mm<>	B type	C type	C type

2. JIS Limit

Thread limits of taps for metric threads : Today the thread limits of ISO2857 are specified in the main book of JIS, and those of old 1st class, 2nd class and 3rd class are specified in JIS Appendix. In the thread limits of 1st, 2nd and 3rd classes (old JIS), the pitch diameter tolerances change depending on nominal size and pitch even if the class is same. On the other hand, in the thread limit of ISO2857 (current JIS), the pitch diameter tolerance is same and only the tolerance position changes as far as the nominal size is same.

The tolerance, as shown in the next picture (Page 669), is specified as X% of internal thread tolerance and it changes depending on nominal diameter and pitch. Thread classes of the main book of JIS will be said to be a system located in the middle of YAMAWA P class and old JIS class. To show clearly, thread limit classification is called Class 1, Class 2 and Class 3 in current JIS, and 1st class, 2nd class and3rd class in old JIS.

Pitch Dia. tolerance of 5H

– Basic Pitch Dia.

3. Comparison of pitch diameter tolerance zone for the classes of internal thread and tap.

Following graph shows :

In metric coarce threads

(1) Tap limit classes of YAMAWA P class.

(2) Pitch diameter tolerance zone of 2nd class (Tap) of JIS Appendix (old JIS) and that of class 2 (Tap) < class 1 for M1.4 and smaller > of the main book of JIS (current JIS).

(3) Pitch diameter tolerance zone of old JIS 2nd class (Internal thread) and that of JIS 6Hclass (Internal thread) <5H class for M1.4 and smaller> (4) Pitch diameter tolerance zone of standard classes of YAMAWA P class.

Pitch diameter tolerance zone of internal threads in old JIS class 2.

Pitch diameter tolerance zone of internal thread in current JIS (ISO) Class 5H for M1.4 and smaller, class 6H for M1.6 and larger

nink threads with

rechnical-1 663

echnical ormation

9. Classes of Internal Threads and Classes of Taps

Description of products

	P1			P4											
P class (0.6 <pitch≦1.75)< th=""><th></th><th>P2</th><th></th><th></th><th>P5</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></pitch≦1.75)<>		P2			P5										
	:	: :	P3	:	: :	P6	E - E	:	:			:			-
	0 10 2	20 30 4	IO 50 6	50 70 i	30 90 1	po 110 1	20 130	140	150) 16	0 1	70 1	80 19	0 20	qo
	Basic Pit	ch Dia.							-					→ (+)µr	m
Sizes															-
M 4 ×0.7		HT,SP,PO				JIS class 2									
		clas	s 2	;											
	:	: :	: :	: :	JIS class 2										-
M 4.5×0.75	·	HT,SP,PO	·c 2			6H									-
		Cida		: :			÷								÷
M5 X08		SP.PO	НТ			JIS clas	ss 2								-
10 0.0	:	cla	ss 2	: :	: :	: :	6H								
	:	; : :		:											
M6 ×1		HT,SP,PO				JIS Class 2		÷	6H						
			class 2	ļ								<u>.</u>			
						JIS class 2									-
M7 ×1	·	HI,SP,PU	class 2						6H						-
		· · · · · · · · · · · · · · · · · · ·					ŀ	•••••••				÷			÷
M8 ×1.25		SP	HT,PO			JIS	class 2	:		011					-
			class 2					:		6H					
	:	: :	: :	: :	: :	:	class 2								
M 9 ×1.25		SP	HT,PO			UIC	010002	:		6H					
		÷							······			÷			
		SP	HT PO				JIS	class 2							-
WITU ×1.5	:		class 2	2	: :	: :	: :	:	:			6H :			-
		÷		÷•••••		÷·····	÷i	·····				÷			
M11 ×1.5		SP		HT,PO							JIS	5 class 2 6H			
		į	class 2	2			įį.	;	;						
	:	: :	: :	: :	: :	: :	: :	:	JIS	class 2					-
M12 ×175		SP	ні											6H	
11112 / 11.7 O															•
				class 2				÷				:			:
	ł			class 2			: :	÷							:
	1							:	:			:			•
	P1		P4					:	:			:			:
Piclass	P1	20	P4	<u>1855 2</u>											:
P class (1.75 <pitch≦5)< th=""><th>P1</th><th>2 P2</th><th>P4</th><th>P5</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>:</th></pitch≦5)<>	P1	2 P2	P4	P5											:
P class (1.75 <pitch≦5)< th=""><th>P1</th><th>P2 P2 P3</th><th>P4</th><th>P6</th><th></th><th>E0. 150. 170. 1</th><th>20 100</th><th>200 210</th><th></th><th></th><th>10 250</th><th></th><th>70 220</th><th>200 2</th><th></th></pitch≦5)<>	P1	P2 P2 P3	P4	P6		E0. 150. 170. 1	20 100	200 210			10 250		70 220	200 2	
P class (1.75 <pitch≦5)< th=""><th>P1</th><th>22 P2 30 40 50</th><th>P4</th><th>P6</th><th>20 130 140 1</th><th>50 160 170 1</th><th>80 190</th><th>200 210</th><th>) 220</th><th>230 24</th><th>10 250</th><th>260 2</th><th>70 280</th><th>290 3</th><th>: </th></pitch≦5)<>	P1	22 P2 30 40 50	P4	P6	20 130 140 1	50 160 170 1	80 190	200 210) 220	230 24	10 250	260 2	70 280	290 3	:
P class (1.75 <pitch≦5) Sizes</pitch≦5) 	P1	P2 P2 P3 30 40 50 ch Dia.	P4	P5 P6	20 130 140 1	50 160 170 1	80 190 190	200 210) 220	230 24	10 250	260 2	70 280	290 3 → (+)µr	: 300 m
P class (1.75 <pitch≦5) Sizes</pitch≦5) 	P1	P2 P2 An An A	P4	P5 P6	20 130 140 1	50 160 170 1	80 190 	200 210) 220	230 24	10 250 	260 2	70 280	290 3 → (+)µr	: 3000 J
P class (1.75 <pitch≦5) Sizes M14×2</pitch≦5) 	P1 6 10 20 5 Basic Pit	22 P3 30 40 50 Ch Dia.	P4	P5 P6	20 130 140 1	50 160 170 1 JIS class 2	80 190	200 210 6H) 220	230 24	10 250	260 2	70 280	290 3 1	: 3000 J
P class (1.75 <pitch≦5) Sizes M14×2</pitch≦5) 	P1 0 10 20 3 Basic Pit	P2 P3 30 40 50 Ch Dia. 5P HT	P4	P5 P6	20 130 140 1	50 160 170 1 JIS class 2	80 190 	200 210 6H) 220	230 24	10 250	260 2	70 280	290 3 Industria → (+)µr	: 3000 J m
P class (1.75 <pitch≦5) Sizes M14×2 M16×2</pitch≦5) 	P1 0 10 20 5 Basic Pit	P2 P3 30 40 50 Ch Dia. 5P HT	P4	P5 P6	20 130 140 1	50 160 170 1 JIS class 2 JIS class 2	80 190 	200 210 6H) 220	230 2	10 250	260 2	70 280	290 3 	: 300 J m
P class (1.75 <pitch≦5) Sizes M14×2 M16×2</pitch≦5) 	P1 	P2 P3 30 40 50 Ch Dia. SP HT SP HT	P4	P5 P6		50 160 170 1 JIS class 2 JIS class 2	80 190	200 210 6H) 220	230 2	10 250 	260 2	70 280	290 3 ₩/////// + (+)µr	: 300 m
P class (1.75 <pitch≦5) Sizes M14×2 M16×2</pitch≦5) 	P1	P2 P3 30 40 50 Ch Ch Dia. SP HT SP HT	P4	P5 P6		50 160 170 1 JIS class 2 JIS class 2	80 190	200 210 6H) 220	230 24	10 250	260 2	70 280	290 3 → (+)µr	: 3000 J m
P class (1.75 <pitch<math>\leq5) Sizes M14×2 M16×2 M18×2.5</pitch<math>	P1	P2 P3 30 40 50 C ch Dia. SP HT SP HT SP HT	P4 30 70 80 PO class 2 PO class 2 HT,PO	P5 P6		50 160 170 1 JIS class 2 JIS class 2 JIS class 2	80 190 80 190 100 100 100 100 100 100 100 100 100	200 210 6H	220	230 24	0 250	260 2	70 280	290 3 → (+)µı	: 300
P class (1.75 <pitch<math>\leq5) Sizes M14×2 M16×2 M18×2.5</pitch<math>	P1	P2 P3 30 40 50 ch Dia. SP HT SP HT SP HT SP SP	P4 50 70 80 PO class 2 Class 2 HT.PO class 2	P5 P6		50 160 170 1 JIS class 2 JIS class 2 JIS class 2 JIS class 2	80 190 80 190 81	200 210 6H	220 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	230 2	10 250	260 2	70 280	290 3 → (+)µr	: 3000 J m
P class (1.75 <pitch<math>\leq5) Sizes M14×2 M16×2 M18×2.5 M20×2.5</pitch<math>	P1	P2 P3 30 40 50 ch Dia. SP HT SP HT SP HT	P4 50 70 80 PO class 2 class 2 HT.PO class 2	Class 2		50 160 170 1 JIS class 2 JIS class 2 JIS class 2 JIS class 2 JIS class 2 JIS class 2	80 190 80 190 190 190 190 190 190 190 190 190 190	200 210 6H	220 	230 2:	10 250	260 2	70 280	290 3 → (+)μ	: 3000 J
P class (1.75 <pitch<math>\leq5) Sizes M14×2 M16×2 M18×2.5 M20×2.5</pitch<math>	P1	P2 P3 30 40 50 ch Dia. SP HT SP HT SP SP	P4 50 70 80 9 60 70 80 9 60 70 80 9 70 80 90 80 80 80 80 80 80 80 80 80 80 80 80 80	P6		50 160 170 1 JIS class 2 JIS class 2 JIS class 2 JIS class 2 JIS class 2	80 190 80 190 81 190 82 190 83 2 83 2 84 190 84 190	200 210 6H	220 	230 2:	10 250	260 2	70 280	290 3 → (+)μτ	: 3000 m
P class (1.75 <pitch<math>\leq5) Sizes M14×2 M16×2 M18×2.5 M20×2.5</pitch<math>	P1	P2 P3 30 40 50 ch Dia. 5P HT 5P HT 5P SP 5P SP 5P SP	P4 P0 class 2 HT.PO class 2 HT.PO class 2	Class 2		50 160 170 1 JIS class 2 JIS class 2 JIS class 2 JIS class 2 JIS class 2	80 190 80 190 190 190 190 190 190 190 190 190 190	200 210 6H	220 0.1220 661	230 2.	0_250	260 2	70 280	290 3 Industra → (+)μτ	: 3000
P class (1.75 <pitch<math>\leq5) Sizes M14×2 M16×2 M18×2.5 M20×2.5 M22×2.5</pitch<math>	P1	P2 P3 30 40 50 ch Dia. 5P HT 5P HT 5P SP 5P SP	P4 P0 class 2 HT,P0 class 2 HT,P0 class 2 HT,P0 class 2	Class 2		50 160 170 1 JIS class 2 JIS class 2 JIS class 2 JIS class 2 JIS class 2 JIS class 2 JIS class 2	80 190 80 190 190 190 190 190 190 190 190 190 190	200 210 6H	0. 220 0. 220 6H	230 2	0250	260 2	70 280	290 3 μαματική → (+)μτ	: 300
P class (1.75 <pitch<math>\leq5) Sizes M14×2 M16×2 M18×2.5 M20×2.5 M22×2.5</pitch<math>	P1	P2 P3 30 40 50 ch Dia. SP HT SP HT SP SP SP SP	P4 P0 class 2 HT,P0 class 2 HT,P0 class 2 HT,P0 class 2	Class 2		50 160 170 1 JIS class 2 JIS class 2 JIS class 2 JIS class 2 JIS class 2 JIS class 2	80 190 80 190 International Iass 2 Iass 2 Iass 2 Iass 2	200 210 6H	0. 220 0.1.20 6H	230 2	10_250	260 2	70 280	290 3 Ιαπίατα → (+)μτ	3000 J M M
P class (1.75 <pitch<math>\leq5) Sizes M14×2 M16×2 M18×2.5 M20×2.5 M22×2.5</pitch<math>	P1	P2 P3 30 40 50 ch Dia. SP HT SP HT SP SP SP SP	P4 P4 P4 P0 class 2 P0 class 2 P0 P0 class 2 P0 P0 class 2 P0 P0 P0 class 2 P0 P0 P0 P0 P0 P0 P0 P0 P0 P0			50 160 170 1 JIS class 2 JIS class 2 JIS class 2 JIS class 2 JIS class 2 JIS class 2	80 190 Boot Indianation Bass 2 Bass 2	200 210 6H	0 220 0 220 6H	230 2	0.250	260 2	70 280	290 3 !	: 3000
P class (1.75 <pitch<math>\leq5) Sizes M14×2 M16×2 M16×2 M18×2.5 M20×2.5 M22×2.5 M22×2.5</pitch<math>	P1	22 P3 30 40 50 ch Dia. 5P HT 5P HT 5P HT 5P SP 5P SP 5P SP	P4 P4 P4 P0 class 2 P0 class 2 P0 cla	Class 2		50 160 170 1 JIS class 2 JIS class 2 JIS class 2 JIS class 2 JIS class 2 JIS class 2 JIS class 2	80 190 80 100 100 100 100 1000000000000000000	200 210 6H	220 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	230 2	0.250	260 2	70 280	290 3 → (+)µr	:

Technical Information

 Chink threads with

 664

4. Standard Class and Oversize

The standard class of the tap which we have been manufacturing for general use is JIS 2nd class. This JIS 2nd class is basically defined as the thread limit of the tap which can cut the internal thread of old JIS 2nd class. With technical innovation such as various tap classification, high precision tapping machines, workpiece materials and diversity of workpieces' dimension, conventional products having JIS 2nd class could not always satisfy customers requirement due to following situations.

- (1) In cutting taps, the shape of flutes influences the thrust of axial direction. We explain about oversize cutting tendency caused by the thrust force of axial direction by referring to that of Straight fluted hand taps as a basic. Spiral pointed taps have little tendency of oversize cutting, but Spiral fluted taps have a tendency of oversize cutting.
- (2) Due to the relation between pitch diameter of JIS 2nd class tap and that of GO thread plug gauge for the internal thread of old JIS 2nd class, if the cutting edge of tap wears normally, the taps will become gauge out quickly resulting in short tool life.
- (3) Due to the material or shape of workpiece, the material can shrink. In these cases, it would be better to use oversized taps to compensate for shinkage after tapping.

(4) When plating is to be applied to internal threads after threading, we should use oversized taps to compensate for the thickness amount of plating.

(5) Where little tendency of oversize cutting is expected, but large wear in tools is expected during tapping operation, it is better to consider using oversized taps as much as possible.

From these situations, in spiral pointed taps, spiral fluted taps and various types of special purpose taps, YAMAWA has adopted the P class limit system which is explained in previous pages. Depending on the type and designation of taps, YAMAWA has selected from the P class system the tap's thread limit which the tap manufacturer recommends for general tapping operation. From the reason of (1) stated above, even in the same tap designation, the recommendation for spiral pointed taps is different from that for spiral fluted taps. Especially in the standard products of spiral pointed taps and spiral fluted taps, YAMAWA has specified the recommendation differently in the relation to oversize cutting tendency. Oversize taps mean the taps of which thread limits are oversize above the recommendation. This is due to the reasons (3), (4) and (5) stated above. Usually for oversize taps, YAMAWA recommends the taps which thread tolerance classes are one or two steps above the standard recommendation. As you can see in the picture drawn in previous pages, the recommendation can be used for cutting JIS (ISO) 6H internal threads.

5 Classes of Taps for European market and PD tolerance zone of taps

5. Classes of 7	Faps for Europ	ean market, and	PD tolerance	e zon	e of taps.			Unit : µm
UNC	2B	UNF	2B		BSW	—	G	_
Nr. 1-64	+28~+12	Nr. 0-80	+26~+11		¹ ∕ ₁₆ ×60	+28~+13	1⁄8 - 28	+43~+21
Nr. 2-56	+30~+13	Nr. 1-72	+28~+12		³ ∕ ₃₂ ×48	+32~+15	 1⁄4 - 19	+50~+25
Nr. 3-48	+32~+14	Nr. 2-64	+29~+12		¹ ∕8 ×19	+35~+15	³ ⁄8 - 19	+50~+25
Nr. 4-40	+34~+16	Nr. 3-56	+31~+13		5∕ ₃₂ ×32	+40~+18	V∕₂ -14	+57~+28
Nr. 5-40	+35~+16	Nr. 4-48	+32~+14		³ ∕ ₁₆ ×24	+44~+21	⁵ ∕ ₈ - 14	+57~+28
Nr. 6-32	+38~+18	Nr. 5-44	+34~+15		1∕ ₄ ×20	+46~+23	3∕₄ -14	+57~+28
Nr. 8-32	+39~+18	Nr. 6-40	+36~+16		5∕ ₁₆ ×18	+49~+23	1 - 11	+72~+36
Nr.10-24	+42~+20	Nr. 8-36	+38~+17		³ ∕8 ×16	+51~+25	1 1⁄4 - 11	+72~+36
Nr.12-24	+43~+20	Nr.10 - 32	+40~+18		⁷ ∕ ₁₆ ×14	+56~+28	1 ½ - 11	+72~+36
1/4 -20	+46~+22	Nr.12 - 28	+42~+19		1⁄2 ×12	+61~+30		
⁵ ⁄ ₁₆ -18	+49~+23	1⁄4 - 28	+43~+19		^{9∕} 16×12	+61~+30		
³ ⁄8 -16	+53~+25	⁵ ⁄ ₁₆ - 24	+46~+20		5∕8 ×11	+63~+30		
⁷ ∕ ₁₆ -14	+56~+27	³ ⁄ ₈ - 24	+48~+20		³∕ ₄ ×10	+69~+33		
V ₂ -13	+58~+28	7∕ ₁₆ - 20	+51~+22		7∕ ₈ × 9	+69~+33		
^{9∕} 16 -12	+60~+29	1/2 - 20	+52~+23		1 × 8	+74~+36		
⁵ ⁄8 - 11	+63~+30	^{9∕} 16 - 18	+54~+23		1 ¼× 7	+79~+38		
³ ⁄ ₄ - 10	+66~+31	⁵ ⁄ ₈ - 18	+56~+23		1 ¼× 7	+79~+38		
⁷ / ₈ - 9	+70~+33	3∕₄ -16	+60~+25		13∕ ₈ ×6	+83~+41		
1 - 8	+73~+35	⁷ ∕ ₈ - 14	+64~+27		1 ½× 6	+84~+40		
		1 - 12	+67~+29		15∕ ₈ ×5	+90~+45		
					1 ³∕₄× 5	+92~+46		
					$1^{7}/_{0} \times 45$	+95~+48		

 2×4.5

+96~+48

9. Classes of Internal Threads and Classes of Taps

6. Comparison table of tap's classes for American market and PD tolerance for ANSI unified internal threads.

	Class	P1		P3		P5														
Designati	ion		P2		P4		P6													
		0 10 20	30 4	0 50	60 70	80	90 10	0 110	120 13	0 140	150 1	60 1	170 180	190	200	210	220 230	24(PD toler internal	threads
		Basic Pitc	h Dia.					·····	· · · · · · · · · · · · · · · ·			·····	÷•••••					→ (+)μm	μm	μm
No.2-56	UNC	P1											: <u>:</u> [:	Pclass	-:	<u>: :</u>		53	70
		GH2 P1											[Pclass	oversize				
No.3-48	UNC	GH2													ANSI ANSI d	versize			55	75
		P1	P2	P3									Ì		intern	al thread	s 3B			
No.4-40	UNC	GH2	GH3	GH4 G	GH5										intern	al thread	s 2B		60	83
No 5-40	UNC	P1																	63	83
10.0 10	0110	GH2											<u>.</u>							
	Class	:	D2] :	D/		: [DG	:	÷	:	:	: :	÷	÷	÷	: :	÷		
Designati	ion			P3	1 4		P5		P	7										
		0 10 20		0 50	 60 7 <mark>,</mark> 0	80		 0 110	120 13	0 140	150 1	; 60 1	.: 170 180	190	200	210		240	PD toler internal	ance of threads
		Basic Pitc	h Dia.															→ (+)µm	for 3B µM	for 28 µm
No6-32	UNC		P2	P3	P4														68	93
	0.10	GH2	GH3 (GH4 G	H5 GH	6 GH7	7						<u>.</u>							
No.8-32	UNC		P2				7												71	96
		GHZ	BH3 0	BAH4 G	H5 GH	6 GH														
No.10-24	UNC		GH3	G	H5 GH	6 GH	7					-							80	108
			P2				_													
N0.12-24	UNC		GH3																82	110
1/4-20	UNC		P2	P3	P4														90	123
			GH3	G	H5 GH	6 GH7	7													
5/16-18	UNC		P2	P3	P4														98	134
			GH3 P2	P3	IH5 P4	GFL														
3/8-16	UNC		GH3	G	H5	GH	7												108	144
7/40.44			P2	P3																
//16-14	UNC		GH3	G	iH5														116	154
1/2-13	UNC		P2	P3	P4														121	165
			GH3	G	iH5	GH7	7													
9/16-12	UNC		P2																128	172
			GH3	P3	P4															
5/8-11	UNC		GH3	G	iH5														136	182
2/4 10				P3	P4															105
3/4-10	UNC		GH3	G	iH5														144	195
7/8-9	UNC			P3															154	207
			ľ	GH4																
	Class	P2			P4		. P	<u> </u>		P8_		ŀ	: :	:						
Designati	ion		P	3		P <u>5</u>			27			Į		·····						
	· · · · · · · · · · · · · · · · · · ·	L										*******							e	

Designat	tion			P3		P5			P7											
		0 10	20 30	40 50	60 70	80	90	100 110) 120	130 1	140 18	50 160	170	180 1	90 20	0 210	220	230 24	PD tole interna	rance of I threads
		Basic	Pitch Dia.															—→ (+)µm	for 3B µM	for 2B µm
1-8	UNC				P4														167	223
				GH4				-												

echnical-17 666 Think threads with

Technical Information

Guide to Thread Forming Taps (Roll Taps)

Thread Forming Taps are the tools used for producing internal threads by a thread forming process. Currently, YAMAWA's Thread Forming Taps have a good reputation by being used in large area. They are widely used along with the diversity of workpieces and with the change into miniaturization of workpieces. Followings are the characteristics and features of Thread Forming Taps (Roll Tap) which cutting type taps do not have.

<Features of Roll Taps>

- Tapping without producing chips. They are suitable for blind hole tapping. In producing internal threads with no chips, they save you a time for chip disposal.
- ORoll taps are stronger than cutting taps due to their design. The effect of fluteless design gives a large cross-section area to the tap, which effectively eliminates the problem of chip jamming and thus make Roll taps very strong.
- OROII taps produce excellent pitch diameter well within pitch diameter tolerances. Material deformation process produces the internal threads with good surface finish as well as precise pitch diameter.
- OHigh efficiency and tool life The configuration of the lobes at the crests of the tap threads make high speed tapping possible and extends tool life compared with cutting type taps. The addition of a supplemental tap surface treatment, such as Oxide, Nitride, TiN, and TiCN can extend tool life 2 to 20 times over an uncoated (bright) taps performance.

<Points to note during a Roll tapping operation>

OTapping torque is 2 to 3 times larger than that of cutting type taps.

- ORoll tapping is only applicable to stringy materials.
- OThe deviation of hole size before tapping should be about 5% of pitch. The control of hole size before tapping should be more severe than that of cutting type taps.
- OThe selection of lubricants is important to prevent sticking or welding.
- OBurrs at the face of an internal thread are larger than those produced by cutting type taps, in some cases it is necessary to take additional countersink processing at the top of hole.
- OIn the minor diameter of internal thread, U-shape form (Tine form) at the hole entrance can be seen. U-shape form is never seen when using cutting type taps.

<Selection of YAMAWA Roll Taps>

- Types of Roll Taps YAMAWA produces various types of Roll Taps which include General purpose taps, Special purpose taps for non-ferrous and steel, as well as special purpose taps with surface treatment for the specified applications. To provide for longer tool life, specially developed premium materials are also used together with physical vapor deposition (PVD) such as TiN and TiCN. In particular, OL-RZ is superior product developed for dry machining with good regards to tapping environment and performance.
- OTap Materials YAMAWA's standard tap material is SKH58 designed for improving torque, superior anti-friction properties as well as toughness. To extend tool life, we use SKH56, or SKH10(Powder HSS) which is the best tap material for antifriction.
- ○Tolerance Class Using the datum 12.7µm in a step form, in accordance with ANSI standard GH class, we made up YAMAWA's G class system. The differences in materials being Roll tapped, as well as hole size, contribute to differences in thread forming. YAMAWA offers 2 to 3 oversized tap tolerance classes in order to achieve the most suitable internal thread pitch diameter size.
- Chamfer length Chamfer lengths : 2 pitches for blind hole use and 4 pitches for through hole use. Basically 4 pitches have longer tool life than 2 pitches because force applied on one blade at 4 pitch chamfer is smaller than that at 2 pitch chamfer. However, it is difficult to say about tool life in a few words because each different tapping condition influences the tool life.

<Shape of internal threads and the ratio of thread engagement affected by bored hole diameter>

Compared with the basic height of thread engagement, the actual height of the thread engagement is called "thread engagement ratio" in percentage. Depending on the bored hole diameter, internal threads and thread engagement ratio will change.

In tapping, the tapping condition must be chosen by refering to the thread engagemet ratio.

In tapping, it can reduce cutting space and forming space to make bored hole diameters as large as possible. This, through reducing the load on taps, can restrict tap's wear and damage.

<Condition of use>

ORelation between tapping speed and tapping lubricant depending on work materials.

	Work Material	Tapping Speed (m/min)	Tapping lubricant*
Aluminum and Aluminum Allov	Die Cast Materials		Sulfer-chlorinated Mineral oil
Aluminum and Aluminum Alloy	Cold Drawn, Cold Forged, Cast		Chlorinated non-soluble oil Non-soluble oil
Zinc and Zinc Alloy	Die Cast Materials		
	Cold Drawn, Cold Forged, Cast		
Copper	Cold Forged, Cast	25~35	
Brass	Cold Drawn, Cold Forged	25~35	
Steel	Mild Steel, Medium Carbon Steel, Stainless Steel	6~15	Chlorinated non-soluble oil
Steel	Free Cutting Steel, Soft Magnetic Iron	15~25	

*Basis of selection of JIS symbols

Note : It is necessary to carefully select a suitable tapping speed taking into consideration : machining conditions, style of tap, number of tap chamfered threads, work piece design, material being tapped, hole condition and type of tapping fluid.

<Accuracy of roll taps>

YAMAWA G class system Thread Forming Taps

OYAMAWA G class system is made by using the datum 0.0005 inch (12.7µm) in a step form in accordance with ANSI standard GH class.

OThe upper deviation of G class is decided by rounding off the grade No.× 12.7 to 1 decimal.

OThe lower deviation of G class is specified in the same upper tolerance of one lower step.

OThe tolerances are either 12 µm or 13µm.

Comparison of pitch tolerance zone between class 2 internal threads and recommended Roll Taps G Class.

Roll taps for miniature threads, Accuracy GS class

OGS class is the accuracy class special for roll taps for miniature threads.

Comparison table of PD tolerance of GS class of roll taps for miniature threads and 4H5 internal threads.

How to set the tap's oversize to meet with the coating margin of internal threads

1) Relation between coating thickness and pitch diameter when applied with coating

Dwg.1 shows the relation between coated internal thread and pitch diameter

* Thickness of coating is measured at right angle to flank face. Pitch diamete is measured at right angle to axis (radially).

Where t (coating thickness) equals 3μ m, by using following formula, oversize is roughly caluculated. Pitch diameter decrease $2t \times 2$ (both side of threads) = 3μ m×2×2 =12 μ m (rough over size)

2) How to specify taps for coating

- 1. We suppose the accuracy of finished internal threads is 6H class, and inspection is done with GP-6H and NP-6H.
- 2. We suppose the disperse of coating thickness is controlled within the tolerance of 8~16µm.
- The disperse of coating thickness, when it is exchanged into pitch diameter, will become the disperse of 32~64µm.
- 3. Accuracy of internal threads before coating is the thread accuray which GP-6H goes through (OK), even when max coating (64µm) is applied. And this accuracy is the thread accuray which NP-6H does not go through (OK), when min coating (32µm) is applied.
- 4. We propose followings for inspecting the accuracy of internal threads before coating :
 - GO gauge before coating : GP-6H+64
- 5. Next, based on GO gauge before coating and NOT GO gauge before coating, we study to specify the suitable accuracy of the tap before coating.

M6 \times 1 How to specify the accuracy of tap before coating (Coating thickness 8 \sim 16 μ m) Minor diameter of JIS 6H Minor diameter of JIS 6H +150GP-6H NP-6H Internal threads before coating Internal threads before coating +182 +64GP-6H+64 +71 +81 NP-6H+32 +182 +192 Suggested cutting taps P5.5 +110+90Suggested roll taps G12 100 200 0 50 150 250 (um)Basic size of pitch diameter : 5.350mm M6×1 Basic size of pitch diameter : 5.350mm : 0~+150μm (Tolerance : 150μm) Internal thread tolerance 6H Accuracy GP-6H :+7~+17µm Accuracy NP-6H :+150~+160um Internal thread tolerance before coating :+64~+182um (Tolerance : 118um) Accuracy GP-6H+64 :+71~+81µm Accuracy NP-6H+32 :+182~+192µm Accuracy of suggested cutting taps (P5.5) :+90~+110µm Accuracy of suggested roll taps (G12) :+140~+152µm

12. Recommended bored hole sizes

For Metric Threads

For Metric Threads Unit : mm											
Nominal size	Minor diameter of i	nternal threads (D1)	Drill Size	Nominal size	Minor diameter of	internal threads (D ₁)	Drill Size				
	Max.	Min.			Max.	Min.					
M1 ×0.25	(0.785)	(0.729)	0.75	M7 ×0.75	6.378	6.188	6.3				
M1 ×0.2	(0.821)	(0.783)	0.80	₩ M7 × 0.5	6.599	6.459	6.5				
M1.1×0.25	(0.885)	(0.829)	0.85	M8 ×1.25	6.912	6.647	6.8				
M1.1×0.2	(0.921)	(0.883)	0.90	M8 ×1	7.153	6.917	7.0				
M1.2×0.25	(0.985)	(0.929)	0.95	M 8×0.75	7.378	7.188	7.3				
M1.2×0.2	(1.021)	(0.983)	1.00	₩ M 8×0.5	7.599	7.459	7.5				
M1.4×0.3	(1.142)	(1.075)	1.10	M 9×1.25	7.912	7.647	7.8				
M1.4×0.2	(1.221)	(1.183)	1.20	M 9×1	8.153	7.917	8.0				
M1.6×0.35	1.321	1.221	1.25	M 9×0.75	8.378	8.188	8.3				
M1.6×0.2	(1.421)	(1.383)	1.40	M10×1.5	8.676	8.376	8.5				
₩ M1.7×0.35	1.421	1.321	1.35	M10×1.25	8.912	8.647	8.8				
₩ M1.7×0.2	1.521	1.483	1.50	M10×1	9.153	8.917	9.0				
M1.8×0.35	1.521	1.421	1.45	M10×0.75	9.378	9.188	9.3				
M1.8×0.2	(1.621)	(1.583)	1.60	₩ M10×0.5	9.599	9.459	9.5				
M2 ×0.4	1.679	1.567	1.60	M11×1.5	9.676	9.376	9.5				
M2 ×0.25	(1.785)	(1.729)	1.75	M11×1	10.153	9.917	10.0				
M2.2×0.45	1.838	1.713	1.75	M11×0.75	10.378	10.188	10.3				
M2.2×0.25	(1.985)	(1.929)	1.95	₩ M11×0.5	10.599	10.459	10.5				
₩ M2.3×0.4	1.979	1.867	1.90	M12×1.75	10.441	10.106	10.3				
₩ M2.3×0.25	2.085	2.029	2.05	M12×1.5	10.676	10.376	10.5				
M2.5×0.45	2.138	2.013	2.1	M12×1.25	10.912	10.647	10.8				
M2.5×0.35	2.221	2.121	2.2	M12×1	11.153	10.917	11.0				
₩ M2.6×0.45	2.238	2.113	2.2	₩ M12×0.5	11.599	11.459	11.5				
₩ M2.6×0.35	2.321	2.221	2.3	M14×2	12.210	11.835	12.0				
M3 ×0.5	2.599	2.459	2.5	M14×1.5	12.676	12.376	12.5				
M3 ×0.35	2.721	2.621	2.7	M14×1	13.153	12.917	13.0				
M3.5×0.6	3.010	2.850	2.9	M15×1.5	13.676	13.376	13.5				
M3.5×0.35	3.221	3.121	3.2	M15×1	14.153	13.917	14.0				
M4 ×0.7	3.422	3.242	3.3	M16×2	14.210	13.835	14.0				
M4 ×0.5	3.599	3.459	3.5	M16×1.5	14.676	14.376	14.5				
M4.5×0.75	3.878	3.688	3.8	M16×1	15.153	14.917	15.0				
M4.5×0.5	4.099	3.959	4.0	M17×1.5	15.676	15.376	15.5				
M5 ×0.8	4.334	4.134	4.2	M17×1	16.153	15.917	16.0				
M5 ×0.5	4.599	4.459	4.5	M18×2.5	15.744	15.294	15.5				
M5.5×0.5	5.099	4.959	5.0	M18×2	16.210	15.835	16.0				
M6 ×1	5.153	4.917	5.0	M18×1.5	16.676	16.376	16.5				
M6 ×0.75	5.378	5.188	5.3	M18×1	17.153	16.917	17.0				
₩M6 ×0.5	5.599	5.459	5.5	M20×2.5	17.744	17.294	17.5				
M7 ×1	6.153	5.917	6.0								

The recommended tap drill sizes indicated above are for JIS 6H (Class 2) Metric Threads. • D1: Minor diameter of JIS 6H (Class 2) internal thread. The Minor diameters D1 shown in () are of 5H (Class 2) for coarse threads and of 4H • 5H (Class 1) for fine threads. • *Marked sizes have been eliminated from JIS.

	Minor diameter of i	Drill Sizo	
Nominal size	Max.	Min.	Drill Size
M20×2	18.210	17.835	18.0
M20×1.5	18.676	18.376	18.5
M20×1	19.153	18.917	19.0
M22×2.5	19.744	19.294	19.5
M22×2	20.210	19.835	20.0
M22×1.5	20.676	20.376	20.5
M22×1	21.153	20.917	21.0
M24×3	21.252	20.752	21.0
M24×2	22.210	21.835	22.0
M24×1.5	22.676	22.376	22.5
M24×1	23.153	22.917	23.0
M25×2	23.210	22.835	23.0
M25×1.5	23.676	23.376	23.5
M25×1	24.153	23.917	24.0
M26×1.5	24.676	24.376	24.5
M27×3	24.252	23.752	24.0
M27×2	25.210	24.835	25.0
M27×1.5	25.676	25.376	25.5
M27×1	26.153	25.917	26.0
M28×2	26.210	25.835	26.0
M28×1.5	26.676	26.376	26.5
M28×1	27.153	26.917	27.0
M30×3.5	26.771	26.211	26.5
M30×3	27.252	26.752	27.0
M30×2	28.210	27.835	28.0
M30×1.5	28.676	28.376	28.5
M30×1	29.153	28.917	29.0
M32×2	30.210	29.835	30.0
M32×1.5	30.676	30.376	30.5
M33×3.5	29.771	29.211	29.5
M33×3	30.252	29.752	30.0
M33×2	31.210	30.835	31.0
M33×1.5	31.676	31.376	31.5
M35×1.5	33.676	33.376	33.5
M36×4	32.270	31.670	32.0
M36×3	33.252	32.752	33.0
M36×2	34.210	33.835	34.0
M36×1.5	34.676	34.376	34.5

		Unit : mm	
Nominal size	Minor diameter of i	nternal threads (D ₁)	Drill Sizo
Nominal size	Max.	Min.	Drill Size
M38×1.5	36.676	36.376	36.5
M39×4	35.270	34.670	35.0
M39×3	36.252	35.752	36.0
M39×2	37.210	36.835	37.0
M39×1.5	37.676	37.376	37.5
M40×3	37.252	36.752	37.0
M40×2	38.210	37.835	38.0
M40×1.5	38.676	38.376	38.5
M42×4.5	37.799	37.129	37.5
M42×4	38.270	37.670	38.0
M42×3	39.252	38.752	39.0
M42×2	40.210	39.835	40.0
M42×1.5	40.676	40.376	40.5
M45×4.5	40.799	40.129	40.5
M45×4	41.270	40.670	41.0
M45×3	42.252	41.752	42.0
M45×2	43.210	42.835	43.0
M45×1.5	43.676	43.376	43.5
M48×5	43.297	42.587	43.0
M48×4	44.270	43.670	44.0
M48×3	45.252	44.752	45.0
M48×2	46.210	45.835	46.0
M48×1.5	46.676	46.376	46.5
M50×3	47.252	46.752	47.0
M50×2	48.210	47.835	48.0
M50×1.5	48.676	48.376	48.5

• D1: Minor diameter of JIS 6H (Class 2) internal thread.

Technical Information

For Unified Threads

							Unit : mm	
Nominal size	Minor diameter of i	nternal threads (D ₁)	Drill Size		Nominal size	Minor diameter of i	internal threads (D ₁)	Drill Size
	1 205	1 1 0 0	1.05		5/0 111100	10.000	10.000	10.0
No. 0 - 800NF	1.305	1.182	1.25	-	5/8 - TIUNC	13.808	13.380	13.0
No. 1 - 640NC	1.062	1.425	1.00	-	5/8 - 18UNF	14.001	14.351	14.5
No. 1 - 72UNF	1.612	1.474	1.55	-	3/8 - 24UNEF	14.986	14.732	14.8
NO. 2 - 56UNC	1.871	1.695	1.80	-	3/4 - 10UNC	16.840	16.307	16.6
No.2 - 64UNF	1.912	1.756	1.85	-	3/4 - 16UNF	17.678	17.323	17.5
No. 3 - 48UNC	2.146	1.941	2.1	-	3/4 - 20UNEF	17.957	17.679	17.8
No. 3 - 56UNF	2.197	2.025	2.1	-	7/8 - 9UNC	19.761	19.177	19.6
No. 4 - 40UNC	2.385	2.157	2.3	-	7/8 - 14UNF	20.675	20.270	20.5
No. 4 - 48UNF	2.458	2.271	2.4	-	7/8 - 20UNEF	21.132	20.854	21.0
No. 5 - 40UNC	2.697	2.487	2.6	-	1 - 8UNC	22.606	21.971	22.3
No. 5 - 44UNF	2.740	2.551	2.7	-	1 - 12UNF	23.571	23.114	23.3
No. 6 - 32UNC	2.895	2.642	2.8	-	1 - 14UNS	23.825	23.445	23.6
No. 6 - 40UNF	3.022	2.820	2.9	-	1 - 20UNEF	24.307	24.029	24.1
No. 8 - 32UNC	3.530	3.302	3.4	-	1 ¹ /8 - 7UNC	25.349	24.638	25.0
No. 8 - 36UNF	3.606	3.404	3.5		1 ¹ /8 - 8UN	25.781	25.146	25.5
No.10 - 24UNC	3.962	3.683	3.9	_	1 ¹ /8-12UNF	26.746	26.289	26.5
No.10 - 32UNF	4.165	3.963	4.1		1 ¹ /8-18UNEF	27.381	27.051	27.2
No.12 - 24UNC	4.597	4.344	4.5		1 ¹ /4 - 7UNC	28.524	27.813	28.2
No.12 - 28UNF	4.724	4.496	4.6		1 ¹ /4 - 8UN	28.956	28.321	28.5
No.12 - 32UNEF	4.826	4.623	4.7		1 ¹ /4-12UNF	29.921	29.464	29.6
¹ /4 - 20UNC	5.257	4.979	5.1		1 ¹ /4-18UNEF	30.556	30.226	30.3
¹ /4 - 28UNF	5.588	5.360	5.5		1 ³ /8 - 6UNC	31.115	30.353	30.8
¹ /4 - 32UNEF	5.689	5.487	5.6		1 ³ /8 - 8UN	32.131	31.496	31.8
⁵ /16 - 18UNC	6.731	6.401	6.6		1 ³ /8-12UNF	33.096	32.639	32.8
⁵ / ₁₆ - 24UNF	7.035	6.782	6.9		1 ³ /8-18UNEF	33.731	33.401	33.5
5/16 - 32UNEF	7.264	7.087	7.1		1 ¹ /2 - 6UNC	34.290	33.528	34.0
³ /8 - 16UNC	8.153	7.798	8.0		1 ¹ /2 - 8UN	35.306	34.671	35.0
³ /8 - 24UNF	8.636	8.382	8.5		1 ¹ /2-12UNF	36.271	35.814	36.0
³ /8 - 32UNEF	8.864	8.662	8.7		1 ¹ /2-18UNEF	36.906	36.576	36.7
7/16 - 14UNC	9.550	9.144	9.4]	1 ⁵ /8 - 8UN	38.481	37.846	38.1
7/16 - 20UNF	10.033	9.729	9.9		1 ⁵ /8-12UN	39.446	38.989	39.1
7/16 - 28UNEF	10.337	10.135	10.2	1	1 ⁵ /8-18UNEF	40.081	39.751	39.8
¹ /2 - 13UNC	11.023	10.592	10.9]	1 ³ /4 - 5UNC	39.827	38.964	39.5
1/2 - 20UNF	11.607	11.329	11.5		1 ³ /4 - 8UN	41.656	41.021	41.3
1/2 - 28UNEF	11.938	11.710	11.8	1	1 ³ /4-12UN	42.621	42.164	42.3
9/16 - 12UNC	12.446	11.989	12.2	1	2 - 4 ¹ /2UNC	45.593	44.679	45.2
9/16 - 18UNF	13.081	12.751	12.9	1	2 - 8UN	48.006	47.371	47.8
9/16 - 24UNEF	13.385	13.132	13.2]	2 - 12UN	48.971	48.514	48.6

• The recommended tap drill sizes indicated above are for JIS Class 2B UNC & UNF threads, and ANSI B1.1 Class 2B UNEF, UN & UNS threads.

Nominal size	Bored h	ole size	
Norman Size	Max.	Min.	
M 2 ×0.4	2.16	2.10	2.13
M 2.5×0.45	2.68	2.6	2.6
M 2.6×0.45	2.78	2.7	2.7
M 3 ×0.5	3.20	3.12	3.15
M 4 ×0.7	4.30	4.17	4.2
M 5 ×0.8	5.33	5.16	5.2
M 6 ×1	6.42	6.25	6.3
M 8 ×1.25	8.52	8.31	8.4
M10 ×1.5	10.62	10.37	10.5
M10 ×1.25	10.52	10.31	10.4
M10×1	10.42	10.25	10.3
M12×1.75	12.73	12.43	12.6
M12×1.5	12.62	12.37	12.5
M12×1.25	12.52	12.31	12.4

For Metric Threads Using with Helical Coil Wire Inserts

Manager at a taxa	Dorean			
Nominal size	Max.	Min.	Drill Size	
M14×2	14.83	14.49	14.7	
M14×1.5	14.62	14.37	14.5	
M14×1.25	14.52	14.31	14.4	
M16×2	16.83	16.49	16.7	
M16×1.5	16.62	16.37	16.5	
M18×2.5	19.04	18.58	18.9	
M18×1.5	18.62	18.37	18.5	
M20×2.5	21.04	20.58	20.9	
M20×1.5	20.62	20.37	20.5	
M22×2.5	23.04	22.58	22.9	
M22×1.5	22.62	22.37	22.5	
M24×3	25.25	24.70	25.1	
M24×1.5	24.62	24.37	24.5	

Bored hole size

• The figures listed above are according to the data provided by helical coil wire insert manufacturers.

Pipe Thread (Rc, PT)

Unit:mm											
Nominal sizo	Drill	Size	Internal Thread Minor Dia.	Internal Thread Minor Dia.							
Norminal Size	With Reaming Before Tapping	Without Reaming Before Tapping	On [Min.] Length of Useful Thread	On [Min.] Gauge Length							
Rc ¹ /16 - 28	6.1	6.2	6.244	6.384							
Rc ¹ /8 - 28	8.1	8.2	8.249	8.388							
Rc ¹ /4 - 19	10.7	11.0	10.962	11.174							
Rc ³ /8 - 19	14.2	14.5	14.448	14.658							
Rc ¹ /2 - 14	17.6	18.0	17.979	18.263							
Rc ³ /4 - 14	23.0	23.5	23.378	23.663							
Rc 1 - 11	29.0	29.5	29.459	29.822							
Rc 1 ¹ /4 - 11	37.5	38.0	37.976	38.339							
Rc 1 ¹ /2 - 11	43.4	44.0	43.869	44.232							
Rc 2 - 11	54.9	55.5	55.412	55.844							

For Whitworth Coarse Threads

			Unit : mm
Nominal cizo	Minor diameter of	internal threads (D ₁)	
Norminar size	Max.	Min.	Dinii Size
₩ ¹ /8 - 40	(2.591)	(2.362)	2.55
%W ³∕16 - 24	(3.744)	(3.406)	3.70
W ¹ /4 - 20	5.204	4.914	5.1
W ⁵ / ₁₆ - 18	6.670	6.340	6.6
W ³ /8 - 16	8.113	7.733	8.0
W 7/ ₁₆ - 14	9.508	9.048	9.4
W ¹ /2 - 12	10.830	10.310	10.7
W 9/16 - 12	12.418	11.898	12.3
W ⁵ /8 - 11	13.817	13.257	13.7
W ³ /4 - 10	16.778	16.178	16.6
W 7/8 - 9	19.691	19.031	19.5
W 1 - 8	22.514	21.814	22.3

D1: Minor diameter of JIS Class 2 internal thread.
Whitworth Threads have been eliminated from JIS.
*Marked sizes are in accordance with BSW.

For Sewing Machine Threads

	Unit : mm		
Nominal size	Minor diameter of i	Drill Sizo	
NOTITIAI SIZE	Max.	Min.	Dinii Size
¹ /8 SM44	2.605	2.485	2.5
9/64 SM40	2.948	2.818	2.9
¹¹ /64 SM40	3.742	3.612	3.7

Production data

Unit : mm

Pipe Thread р. DS

Окр, РЗ	Unit : mm		
Nominal ciza	Minor Diameter of JIS	5 internal thread (D1)	
Nominal size	Max.	Min.	Dilli Size
Rp ¹ / ₁₆ - 28	6.632	6.490	6.5
Rp ¹ /8 - 28	8.637	8.495	8.5
Rp ¹ /4 - 19	11.549	11.341	11.4
Rp ³ /8 - 19	15.054	14.846	14.9
Rp ¹ /2 - 14	18.773	18.489	18.6
Rp ³ /4 - 14	24.259	23.975	24.0
Rp 1 - 11	30.472	30.110	30.2
Rp 1 ¹ /4-11	39.133	38.771	38.8
Rp 1 ¹ /2-11	45.026	44.664	44.7
Rp 2 - 11	56.837	56.475	56.5

⊖G, PF		Unit : mm	
Nominal size	Minor Diameter of JI	S internal thread (D1)	Drill Size
	Max.	Min.	5111 5120
G 1/16 - 28	6.843	6.561	6.7
G ¹ /8 - 28	8.848	8.566	8.7
G ¹ /4 - 19	11.890	11.445	11.7
G ³ /8 - 19	15.395	14.950	15.2
G ¹ /2 - 14	19.172	18.631	19.0
G ⁵ /8 - 14	21.128	20.587	21.0
G ³ /4 - 14	24.658	24.117	24.5
G ⁷ /8 - 14	28.418	27.877	28.2
G 1 - 11	30.931	30.291	30.6
G 1 ¹ /8-11	35.579	34.939	35.2
G 1 ¹ /4-11	39.592	38.952	39.2
G 1 ¹ /2-11	45.485	44.845	45.0
G 1 ³ /4-11	51.428	50.788	51.0
G 2 - 11	57.296	56.656	57.0

American Standard Pipe Thread

American Standard Pipe Thread Unit : mm								
			Tap Dı	rill Size				
Nominal size		N	NPSC					
Norminal Size	With Reaming Before Tapping		Without Reaming	g Before Tapping				
	mm	inch	mm	inch	mm	inch		
1/16 - 27	5.94	0.234	6.15	0.242	6.35	0.250		
1/8 - 27	8.33	0.328	8.43	0.332	8.74	0.344		
1/4 - 18	10.72	0.422	11.13	0.438	11.13	0.438		
³ /8 - 18	14.27	0.562	14.27	0.562	14.68	0.578		
1/2 - 14	17.48	0.688	17.86	0.703	18.26	0.719		
3/4 - 14	22.63	0.891	23.01	0.906	23.42	0.922		
1 - 11 ¹ /2	28.58	1.125	28.98	1.141	29.36	1.156		
1 1/4-11 1/2	37.31	1.469	37.69	1.484	38.10	1.500		
1 1/2-11 1/2	43.26	1.703	43.66	1.719	44.45	1.750		
2 - 11 ¹ /2	55.17	2.172	55.58	2.188	56.36	2.219		
2 1/2 - 8	65.48	2.578	66.27	2.609	67.46	2.656		

• The drill sizes are according to ANSI/ASME B1.20.1-1983 PIPE THREADS, GENERAL PURPOSE (INCH) (partial listing).

Dryseal American Standard Pipe Thread Unit : mm											
		Tap Drill Size									
Nominal size		N	NPSC								
Norminal size	With Reaming	Before Tapping	Without Reamin	g Before Tapping							
	mm	inch	mm		mm	inch					
1/16 - 27	5.94	0.234	6.15	0.242	6.25	0.246					
1/8 - 27	8.33	0.328	8.43	0.332	8.61	0.339					
1/4 - 18	10.72	0.422	11.13	0.438	11.13	0.438					
3/8 - 18	14.27	0.562	14.27	0.562	14.68	0.578					
1/2 - 14	17.48	0.688	17.86	0.703	17.86	0.703					
3/4 - 14	22.63	0.891	23.01	0.906	23.42	0.922					
1 - 11 ¹ /2	28.58	1.125	28.98	1.141	29.36	1.156					
1 1/4-11 1/2	37.31	1.469	37.69	1.484							
1 ¹ /2 - 11 ¹ /2	43.26	1.703	43.66	1.719							
2 - 11 ¹ /2	55.17	2.172	55.58	2.188							
2 1/2 - 8	65.48	2.578	66.27	2.609							

Dryseal American Standard Pipe Thread

• The drill sizes are according to ANSI B1.20.3-1976 Dryseal Pipe Threads (Inch) (partial listing).

Percentage of Thread Engagement & Relation between Percentage of Thread Height and Area Removed at A Thread Height

As shown above, when the thread height increases, the amount of material to be removed increases rapidly, so it is an advantage to tap users to keep the hole size (thread minor diameter) as large as possible.

3 Recommended Hole Sizes for Thread Forming Taps

For Metric Threads

For Metric Threads Unit : mm													
Nominal size	Tolerance Class of Tap	Recomr Hole	nended Size		Nominal size Class of Tap Recommended Lass of Tap	Recommended Hole Size		Nominal size	Tolerance Class of Tap	Recommended Hole Size			
		Max.	Min.				Max.	Min.				Max.	Min.
M1 ×0.25	G4	0.92	0.89		M 3.5×0.6	G5	3.27	3.19		M10×1	G 7	9.59	9.48
M1.2×0.25	G4	1.11	1.09		M 3.5×0.35	G5	3.37	3.32		M12×1.75	G 8	11.23	11.09
M1.4×0.3	G4	1.30	1.26		M 4 ×0.7	G6	3.72	3.65		M12×1.5	G 8	11.34	11.22
M1.6×0.35	G4	1.47	1.43		M 4 ×0.5	G6	3.83	3.76		M12×1.25	G 9	11.50	11.36
M1.7×0.35	G4	1.57	1.52		M 5 ×0.8	G6	4.67	4.59		M12×1	G 7	11.58	11.47
M1.8×0.35	G4	1.67	1.62		M 5 ×0.5	G6	4.83	4.76		M14×2	G10	13.14	12.98
M2 ×0.4	G4	1.84	1.79		M 6 ×1	G7	5.59	5.49		M14×1.5	G 9	13.35	13.22
M2 ×0.25	G4	1.91	1.89		M 6 ×0.75	G6	5.69	5.61		M14×1	G 8	13.59	13.48
M2.2×0.45	G5	2.04	1.98		M 7 ×1	G7	6.59	6.48		M16×2	G10	15.14	14.97
M2.3×0.4	G4	2.14	2.09		M 7 ×0.75	G7	6.70	6.62		M16×1.5	G 9	15.34	15.22
M2.5×0.45	G5	2.34	2.27		M 8 ×1.25	G7	7.49	7.36		M16×1	G 8	15.59	15.48
M2.5×0.35	G5	2.38	2.34		M 8 ×1	G7	7.59	7.48		M18×2.5	G11	16.93	16.73
M2.6×0.45	G5	2.44	2.37		M 8 ×0.75	G7	7.70	7.62		M18×1.5	G10	17.35	17.23
M3 ×0.5	G5	2.82	2.75		M10 ×1.5	G7	9.34	9.22		M20×2.5	G11	18.92	18.72
M3 ×0.35	G5	2.87	2.82		M10 ×1.25	G7	9.49	9.35		M20×1.5	G10	19.35	19.22

· According to the ductility, hardness and dimension of the workpiece to be tapped, the recommended hole sizes for thread forming tapping may have to be altered. The values listed above should only be used as an aid in selecting suitable drills when using thread forming taps, the correct hole sizes should be decided based on test result. Further, the values listed above are suitable for 0.5D~2D threading length in relatively ductile materials (D : thread major diameter).

For Unified Threads

Nominal size	Tolerance Class of Tap	Recomr Hole	nended Size		Nominal size	Tolerance Class of Tap	Recommended Hole Size		Nominal size	Tolerance Class of Tap	Recommended Hole Size		
		Max.	Min.				Max.	Min.				Max.	Min.
No.0 - 80UNF	G5	1.45	1.39		No. 5 - 44UNF	G5	2.99	2.90		1/4 - 28UNF	G7	6.00	5.91
No.1 - 64UNC	G5	1.76	1.68		No. 6 - 32UNC	G5	3.22	3.11		5/16 - 18UNC	G7	7.38	7.23
No.1 - 72UNF	G5	1.77	1.70		No. 6 - 40UNF	G5	3.29	3.19		⁵ / ₁₆ - 24UNF	G7	7.53	7.42
No.2 - 56UNC	G4	2.04	1.96		No. 8 - 32UNC	G6	3.89	3.78		³ /8 - 16UNC	G7	8.89	8.72
No.2 - 64UNF	G4	2.06	1.98		No. 8 - 36UNF	G5	3.91	3.81		³ /8 - 24UNF	G7	9.10	8.99
No.3 - 48UNC	G4	2.35	2.25		No.10 - 24UNC	G6	4.44	4.30		7/16 - 14UNC	G8	10.40	10.20
No.3 - 56UNF	G4	2.37	2.29		No.10 - 32UNF	G6	4.53	4.44		7/16 - 20UNF	G8	10.62	10.48
No.4 - 40UNC	G5	2.64	2.54]	No.12 - 24UNC	G6	5.07	4.96		¹ /2 - 13UNC	G8	11.92	11.70
No.4 - 48UNF	G5	2.68	2.59	1	No.12 - 28UNF	G6	5.13	5.03		¹ /2 - 20UNF	G8	12.20	12.06
No.5 - 40UNC	G5	2.97	2.87		1/4 - 20UNC	G7	5.86	5.73					

· According to the ductility, hardness and dimension of the workpiece to be tapped, the recommended hole sizes for thread forming tapping may have to be altered. The values listed above should only be used as an aid in selecting suitable drills when using thread forming taps, the correct hole sizes should be decided based on test result. Further, the values listed above are suitable for 0.5D~2D threading length in relatively ductile materials (D : thread major diameter).

4 Bar diameter for external threads (for cutting type dies)

Tolerable limit size and tolerance of outside diameter for metric external screws

outside diameter of external screws

size

Unit : mm

Production data

size designation	pitch		ISO			old JIS		SIZ design
acsignation		dmax	<i>d</i> min	Td	dmax	dmin	Td	acsign
M1	0.25	1.000	0.933	0.067	0.985	0.940	0.045	
IVII	0.2	1.000	0.944	0.056	0.980	0.930	0.050	M16
M1 1	0.25	1.100	1.033	0.067	1.100	1.033	0.067	
1111.1	0.2	1.100	1.044	0.056	1.100	1.044	0.056	N/1-1-
M1 O	0.25	1.200	1.133	0.067	1.185	1.140	0.045	IVIII
IVI I.Z	0.2	1.200	1.144	0.056	1.180	1.130	0.050	
N44 4	0.3	1.400	1.325	0.075	1.380	1.320	0.060	N.44
IVI 1.4	0.2	1.400	1.344	0.056	1.380	1.330	0.050	IVII
Mic	0.35	1.581	1.496	0.085	1.581	1.496	0.085	
111.0	0.2	1.583	1.527	0.056	1.583	1.527	0.056	
M4 0	0.35	1.781	1.696	0.085	1.781	1.696	0.085	MO
IVI 1.8	0.2	1.783	1.727	0.056	1.783	1.727	0.056	IVI20
140	0.4	1.981	1.886	0.095	1.980	1.890	0.090	
IVI2	0.25	1.982	1.915	0.067	1.980	1.930	0.050	
M0.0	0.45	2.180	2.080	0.100	2.180	2.080	0.100	
IVI2.2	0.25	2.182	2.115	0.067	2.182	2.115	0.067	IVI22
	0.45	2.480	2.380	0.100	2.480	2.380	0.100	
M2.5	0.35	2.481	2.396	0.085	2.481	2.396	0.085	
	0.5	2,980	2.874	0.106	2.980	2.874	0.106	
M3	0.35	2.981	2.896	0.085	2.980	2.880	0.100	M24
	0.6	3 479	3.354	0.125	3.470	3.360	0.110	
M3.5	0.35	3.481	3.396	0.085	3.480	3.380	0.100	
	0.00	3 978	3 838	0 140	3 978	3.838	0.140	M2
M4	0.5	3 980	3 874	0 106	3 970	3.860	0.110	
	0.75	4 4 78	4 338	0 140	4 470	4 340	0.130	M2
M4.5	0.75	4 4 8 0	4.374	0.106	4 470	4 360	0.110	
	0.8	4 976	4 826	0 150	4 976	4 826	0 150	
M5	0.5	4 980	4 874	0.106	4 970	4 860	0 110	M2
M5.5	0.5	5 480	5 374	0.100	5 470	5,360	0 110	
1013.5	1	5 974	5 794	0.180	5 970	5 820	0 150	
M6	0.75	5.074	5.838	0.140	5 970	5.850	0.120	MO
	1	6.974	6 794	0.140	6 970	6.820	0.120	IVIZO
M7	0.75	6 978	6.838	0.100	6 970	6.850	0.120	
	1.25	7 972	7 760	0.140	7 960	7 790	0.170	
MQ	1.20	7.072	7 794	0.180	7 970	7 830	0.140	MO
IVIO	0.75	7.079	7.838	0.100	7.970	7.830	0.140	IVIO
	1.25	8.972	8 760	0.140	8 960	8 790	0.170	
MO	1.25	8.974	8 70/	0.180	8 970	8 830	0.140	
1013	0.75	8 978	8 838	0.100	8 970	8 830	0.140	M3
	1.5	9.968	9 732	0.140	9.960	9 770	0.190	
	1.5	0.000	9.760	0.200	9.960	9,810	0.150	
M10	1.25	0.074	9.700	0.180	0.000	9.820	0.150	M3
	0.75	9.974	0.020	0.100	0.078	0.838	0.130	
	0.75	9.970	9.000	0.140	10.968	10 732	0.140	MO
N/11	1.5	10.900	10.732	0.230	10.900	10.752	0.250	IVIS
	0.75	10.974	10.794	0.100	10.970	10.020	0.130	
	1.75	11.000	11 701	0.140	11.050	11 760	0.140	M3
	1.75	11.900	11.701	0.205	11.950	11.700	0.130	
M12	1.5	11.908	11.732	0.230	11.900	11.790	0.170	MO
	1.25	11.972	11.700	0.212	11.972	11.700	0.212	10138
	1	11.974	10.000	0.180	12.050	10.010	0.150	МЗ
	2	13.962	13.682	0.280	13.950	13.740	0.210	
M14	1.5	13.968	13.732	0.236	13.960	13.790	0.170	
	1	13.974	13.794	0.180	13.960	13.810	0.150	
M15	1.5	14.968	14.732	0.236	14.960	14.790	0.170	
mio	1	14.974	14.794	0.180	14.960	14.810	0.150	M40

ISO tolerance area Class 6g (M1.6 and larger) 6h (M1.4 and smaller) old JIS 2nd class old JIS 2nd class · ISO : from table 2 JIS B0209-2 and from table 1 JIS B0209-3 · Old JIS : from the tolerable limit size and the tolerance of metric coarse threads (for 2nd

class external threads, JIS B 0209-1982 appendix 1, appendix 1 attachment 4. from the tolerable limit size and the tolerance of metric fine threads (for 2nd class external threads), JIS B 0211-1982 appendix, appendix attachiment 4 $\,$

size	pitch		outside	ulameter		I SCIEWS	
designation			ISO				
	P	<i>d</i> max	<i>d</i> min	Td	<i>d</i> max	dmin	Td
	2	15.962	15.682	0.280	15.950	15.740	0.210
M16	1.5	15.968	15.732	0.236	15.960	15.790	0.170
	1	15.974	15.794	0.180	15.960	15.810	0.150
M17	1.5	16.968	16.732	0.236	16.968	16.732	0.236
	1	16.974	16.794	0.180	16.974	16.794	0.180
	2.5	17.958	17.623	0.335	17.950	17.710	0.240
M18	2	17.962	17.682	0.280	17.950	17.650	0.300
	1.5	17.968	17.732	0.236	17.950	17.780	0.170
	1	17.974	17.794	0.180	17.960	17.810	0.150
	2.5	19.958	19.623	0.335	19.950	19.710	0.240
M20	2	19.962	19.682	0.280	19.950	19.650	0.300
MLO	1.5	19.968	19.732	0.236	19.950	19.780	0.170
	1	19.974	19.794	0.180	19.960	19.810	0.150
	2.5	21.958	21.623	0.335	21.950	21.710	0.240
M22	2	21.962	21.682	0.280	21.950	21.650	0.300
IVIZZ	1.5	21.968	21.732	0.236	21.950	21.780	0.170
	1	21.974	21.794	0.180	21.960	21.810	0.150
	3	23.952	23.577	0.375	23.940	23.680	0.260
MOA	2	23.962	23.682	0.280	23.940	23.640	0.300
IVIZ4	1.5	23.968	23.732	0.236	23.950	23.780	0.170
	1	23.974	23.794	0.180	23.960	23.810	0.150
	2	24.962	24.682	0.280	24.940	24.640	0.300
M25	1.5	24.968	24.732	0.236	24.950	24.780	0.170
	1	24.974	24.794	0.180	24.960	24.810	0.150
M26	1.5	25.968	25.732	0.236	25.950	25.780	0.170
	3	26.952	26.577	0.375	26.940	26.680	0.260
	2	26.962	26.682	0.280	26.962	26.682	0.280
M27	1.5	26.968	26.732	0.236	26.950	26.780	0.170
	1	26.974	26.794	0.180	26.974	26.794	0.180
	2	27.962	27.682	0.280	27.940	27.640	0.300
M28	1.5	27.968	27.732	0.236	27.950	27.780	0.170
	1	27.974	27.794	0.180	27.960	27.810	0.150
	3.5	29.947	29.522	0.425	29.940	29.660	0.280
	3	29.952	29.577	0.375	29.952	29.577	0.375
M30	2	29.962	29.682	0.280	29.940	29.640	0.300
	1.5	29.968	29.732	0.236	29.950	29.780	0.170
	1	29.974	29.794	0.180	29.960	29.810	0.150
1400	2	31.962	31.682	0.280	31.940	31.640	0.300
M32	1.5	31.968	31.732	0.236	31.950	31.780	0.170
	3.5	32.947	32.522	0.425	32.940	32.660	0.280
MOO	3	32.952	32.577	0.375	32.952	32.577	0.375
M33	2	32.962	32.682	0.280	32.962	32.682	0.280
	1.5	32.968	32.732	0.236	32.950	32.780	0.170
M35	1.5	34.968	34.732	0.236	34.950	34.780	0.170
	4	35.940	35.465	0.475	35.930	35.630	0.300
	3	35.952	35.577	0.375	35.952	35.577	0.375
M36	2	35.962	35.682	0.280	35.940	35.640	0.300
	1.5	35.968	35.732	0.236	35.950	35.780	0.170
M38	1.5	37.968	37.732	0.236	37.950	37.780	0.170
	4	38.940	38.465	0.475	38.930	38.630	0.300
Mao	3	38.952	38.577	0.375	38.952	38.577	0.375
10139	2	38.962	38.682	0.280	38.962	38.682	0.280
	1.5	38.968	38.732	0.236	38.968	38.732	0.236
	3	39.952	39.577	0.375	39.952	39.577	0.375
M40	2	39.962	39.682	0.280	39.940	39.640	0.300
	1.5	39.968	39.732	0.236	39.950	39.780	0.170

Production data

							Unit : mm	
	nitch		outside	diameter	of externa	l screws		
designation			ISO		SIL blo			
acsignation		<i>d</i> max	<i>d</i> min	$T_{ m d}$	<i>d</i> max	<i>d</i> min	$T_{ m d}$	
	4.5	41.937	41.437	0.500	41.930	41.610	0.320	
	4	41.940	41.465	0.475	41.940	41.465	0.475	
M42	3	41.952	41.577	0.375	41.952	41.577	0.375	
	2	41.962	41.682	0.280	41.940	41.640	0.300	
	1.5	41.968	41.732	0.236	41.950	41.780	0.170	
	4.5	44.937	44.437	0.500	44.930	44.610	0.320	
-	4	44.940	44.465	0.475	44.940	44.465	0.475	
M45	3	44.952	44.577	0.375	44.952	44.577	0.375	
	2	44.962	44.682	0.280	44.940	44.640	0.300	
-	1.5	44.968	44.732	0.236	44.950	44.780	0.170	
	5	47.929	47.399	0.530	47.930	47.590	0.340	
	4	47.940	47.465	0.475	47.940	47.465	0.475	
M48	3	47.952	47.577	0.375	47.952	47.577	0.375	
	2	47.962	47.682	0.280	47.940	47.640	0.300	
	1.5	47.968	47.732	0.236	47.950	47.780	0.170	

Tolerable limit size and tolerance of outside diameter for unified external screws (for 2A thread)

for unified externa	(nal screws (for 2A thread) Unit : n				
size designation	outside c	liameter of extern	al screws		
size designation	dmax	<i>d</i> min	$T_{ m d}$		
No0-80UNF	1.511	1.431	0.080		
No.1-64UNC	1.838	1.743	0.095		
No.1-72UNF	1.838	1.751	0.087		
No.2-56UNC	2.169	2.066	0.103		
No.2-64UNF	2.169	2.073	0.096		
No.3-48UNC	2.496	2.383	0.113		
No.3-56UNF	2.496	2.393	0.103		
No.4-40UNC	2.824	2.695	0.129		
No.4-48UNF	2.827	2.713	0.114		
No.5-40UNC	3.154	3.026	0.128		
No.5-44UNF	3.157	3.036	0.121		
No.6-32UNC	3.484	3.333	0.151		
No.6-40UNF	3.484	3.356	0.128		
No.8-32UNC	4.142	3.991	0.151		
No.8-36UNF	4.145	4.006	0.139		
No.10-24UNC	4.800	4.618	0.182		
No.10-32UNF	4.803	4.651	0.152		
No.12-24UNC	5.461	5.279	0.182		
No.12-28UNF	5.461	5.296	0.165		
1/4-20UNC	6.322	6.117	0.205		
1/4-28UNF	6.324	6.160	0.164		
5/16-18UNC	7.907	7.687	0.220		
⁵ / ₁₆ -24UNF	7.909	7.727	0.182		
³ /8-16UNC	9.491	9.254	0.237		
³ /8-24UNF	9.497	9.315	0.182		
7/ ₁₆ -14UNC	11.076	10.816	0.260		
7/ ₁₆ -20UNF	11.079	10.874	0.205		
1/2-13UNC	12.661	12.386	0.275		
1/2-20UNF	12.666	12.462	0.204		
9/ ₁₆ -12UNC	14.246	13.958	0.288		
⁹ / ₁₆ -18UNF	14.251	14.031	0.220		
⁵ /8-11UNC	15.834	15.528	0.306		
⁵ /8-18UNF	15.839	15.619	0.220		
³ /4-10UNC	19.004	18.677	0.327		
³ /4-16UNF	19.011	18.774	0.237		
7/8-9UNC	22.176	21.824	0.352		
7/8-14UNF	22.184	21.923	0.261		
1-8UNC	25.349	24.969	0.380		
1-12UNF	25.354	25.065	0.289		
11/8-7UNC	28.519	28.103	0.416		
11/8-12UNF	28.529	28.240	0.289		
11/4-7UNC	31.694	31.278	0.416		
11/4-12UNF	31.704	31.415	0.289		
13/8-6UNC	34.864	34.402	0.462		
1 ³ /8-12UNF	34.876	34.588	0.288		
11/2-6UNC	38.039	37.577	0.462		
1 ¹ /2-12UNF	38.051	37.763	0.288		
13/4-5UNC	44.381	43.861	0.520		
2-41/2UNC	50.726	50.168	0.558		

 \cdot from table 4 JIS B0210 and table 4 JIS B0212

thread designation	outside d	iameter of extern	al screws
	<i>d</i> max	<i>d</i> min	$T_{ m d}$
1/16 SM80	1.588	1.518	0.070
⁵ / ₆₄ SM64	1.984	1.904	0.080
3/ ₃₂ SM56	2.381	2.286	0.095
3/ ₃₂ SM100	2.381	2.306	0.075
¹ / ₈ SM40	3.175	3.045	0.130
¹ / ₈ SM44	3.175	3.055	0.120
¹ /8 SM48	3.175	3.065	0.110
9/ ₆₄ SM40	3.572	3.442	0.130
¹¹ / ₆₄ SM40	4.366	4.236	0.130
3/ ₁₆ SM24	4.762	4.602	0.160
³ / ₁₆ SM28	4.762	4.602	0.160
³ / ₁₆ SM32	4.762	4.602	0.160
7/ ₃₂ SM32	5.556	5.396	0.160
¹⁵ / ₆₄ SM28	5.953	5.773	0.180
1/4 SM24	6.350	6.170	0.180
1/4 SM40	6.350	6.220	0.130

Tolerable limit size and tolerance of outside diameter for sewing machine screw external screws (for 2nd thread) Unit : mm

• from table 2 JIS B 0226 (void in 2001)

Pipe taper threads (R, PT) Unit : mm							
Designation	bar diam	eter (ref.)					
	Straight	taper (dia of thread end)					
R 1/16	7.9	7.5					
R ¹ /8	9.9	9.5					
R 1/4	13.4	12.8					
R ³ /8	16.9	16.3					
R ¹ / ₂	21.3	20.5					
R ³ / ₄	26.8	25.9					
R 1	33.7	32.7					
R 1• ¹ /4	42.3	41.2					
R 1·1/2	48.2	47.1					
R 2	60.1	58.7					

Pipe pararell threads (G, PF)

Pipe pararell threa	Unit : mm		
Designation	outside diameter of external screws		
	dmax	dmin	
G 1/ ₁₆	7.723	7.509	
G ¹ /8	9.728	9.514	
G 1/4	13.157	12.907	
G ³ /8	16.662	16.412	
G ¹ / ₂	20.955	20.671	
G ⁵ /8	22.911	22.627	
G ³ / ₄	26.441	26.157	
G ⁷ /8	30.201	29.917	
G 1	33.249	32.889	
G 1•1/4	41.910	41.550	
G 1·1/2	47.803	47.443	
G 2	59.614	59.254	

Unit · mm

ONRS-D recommendation for bar diameter for metric external screws

designation	recommended	d bar diameter
	Max	Min
M3×0.5	2.64	2.62
M4×0.7	3.54	3.52
M5×0.8	4.40	4.38
M6×1	5.30	5.28
M8×1.25	7.10	7.07

ORS-D recommendation for bar diameter for metric external screws

recommended bar diameter designation Max Min M1×0.25 0.808 0.785 M1.1×0.25 0.918 0.891 M1.2×0.25 1.007 0.984 M1.4×0.3 1.168 1.142 M1.6×0.35 1.332 1.300 M1.7×0.35 1.432 1.401 M1.8×0.35 1.530 1.498 M2×0.4 1.699 1.669 M2×0.25 1.796 1.771 M2.2×0.45 1.863 1.827

	Unit : mm	
recommended bar diameter		
Max	Min	
1.998	1.968	
2.096	2.071	
2.162	2.126	
2.228	2.196	
2.262	2.226	
2.318	2.278	
2.627	2.589	
2.718	2.677	
3.607	3.561	
4.606	4.560	
	recommended Max 1.998 2.096 2.162 2.228 2.262 2.318 2.627 2.718 3.607 4.606	

OMS-RS-D recommendation for bar diameter for metric external screws

		0	
designation	recommended bar diameter		
	Max	Min	
S0.5×0.125	0.410	0.396	
S0.6×0.15	0.494	0.479	
S0.7×0.175	0.575	0.559	
S0.8×0.2	0.658	0.640	
S0.9×0.225	0.741	0.720	

16. Surface Treatment

The best surface treatment is applied to each tap depending on the tapping purpose. Characteristics and effectiveness of surface treatment are introduced at next section.

Oxidizing

- OThis treatment was processed by using HOMO furnace being made by LEED AND NORTHUP company USA in 1938, and it is called HOMO treatment. This treatment is also called vapor treatment and steam treatment. Through this treatment, Fe304 layer of blue black color is produced over the tool surface.
- Oxidization treatment produces porous layer on tool's surface. This porous layer works as oil pocket to reduce friction, to avoid welding and to improve the surface roughness of internal screw. Moreover, longer tool life is expected because the treatment reduces the remaining stress of HSS tools.
- OThis treatment does not increase the hardness on tool surface. Using the furnace of YAMAWA original design and choosing the proper treatment time, we have marked good result of oxidizing for YAMAWA HSS tools.
- OStainless steel and low carbon steel are the materials that are easy to get welding. We are applying this treatment to the special purpose taps for these materials to get good result. Further due to the reduction of friction resistance, this treatment has good result for wide range of steel type material.
- OWe combine oxidizing with nitriding for the taps designed for such steel and alloy tool steel. This double treatment wins good reputation of the market.

Efficiency of oxide treatment

16. Surface Treatment

Nitriding

OIn this treatment, we have Nitrogen and Carbon soak into the surface of HSS tools, and react with chemical of HSS material to produce hard nitride. There are 3 method in the treatment, as composition gas method, salt bath nitride method and ion nitride method.

OSalt bath nitride treatment is shifted into gas nitride treatment method because of cyanic environmental pollution.

OThe temperature of treatment is 500 to 550 degree. Hardness and depth of the treatment can be controlled by active nitrogen concentration and reaction time.

OThe high hardness of tool surface minimizes chemical attraction. Result is less welding and friction resistance. Great improvement is expected in tool's performance.

OWe have found out the best combinations of hardness and toughness through our treatment technology

OThe nitriding treatment will be widely applicable to workpiece materials such as gray cast irons, special cast irons, aluminum diecastings with higher silicone content, copper alloys, and resinoids (plastics), these materials produce small segmental chips and are very abrasive.

OWe combine nitrogen and oxidizing for comparatively sticky material such as high carbon steel and refined alloy steel. This double treatment improves the chipping resistance and have won good reputation.

Depth and hardness of Nitride Surface Treatment

Efficiency of Nitride Treatment

Hard coating

High speed cutting and hard-to-machine cutting are the recent technology. To meet this tendency, the hard layer coating by vapor deposition over tool's surface has become popular. There are two coating methods, CVD and PVD. PVD is mainly used for tap.

Physical Vapor Deposition

The features and classification of coating

Olnside of the container of high vacuum, are heat vapor deposition materials. And we vapor deposit particles ionized by electric discharge on tool's surface.

ODue to its low reaction temperature (lower than 500°C), PVD makes little change in shape and hardness of HSS tools.

OWe have adopted iron plating method, and are coating thin layer (1-4um) over our HSS and carbide tools. This layer processed by this method is very high in its adherence and its wear resistance.

Classification	Titanium nitride (TiN)	Titanium carbonitride (TiCN)	Titanium nitride aluminum (TiAIN)	Hard chromium plating (CrN)
Vickers Hardness	2000~2400	3000~3500	2300~2700	1800~2200
Wear resistance	Good	Excellent	Excellent	Normal
Welding resistance	Good	Good	Good	Excellent
Heat resistance	Good	Normal	Excellent	Excellent
Acid resistance	Good	Normal	Excellent	Good
Slippery	Good	Excellent	Good	Excellent
Color	Gold	Blue Dray Violet	Violet	Silver
Workpiece materials	Carbon Steels Aluminum forging	Carbon Steels Hard Steels Stainless Steels Aluminum forging Cast Irons Brass • Bronze	Stainless Steels Cast Irons	Copper

Note: Evaluation (tri-level) of characteristic features is just comparative of these four coatings, TiN, TiCN, TiAlN, and CrN, in the table. These coatings have great advantages of wear resistance, welding resistance, and reduced friction resistance. The values of vickers hardness are also higher than the heat treatment or nitriding of HSS cutting tools from the table.

The efficiency of TiCN coating

7 Carbide Taps

Technological advances in machining automation and CNC machines and machining centers have helped improve the overall tapping process. YAMAWA was quick to respond to evolving customer needs resulting from technological innovations.

We can now recommend carbide taps, which provide tremendous improvements in mass-production and in reducing costs. It is estimated that carbide taps have 50 times more durability than HSS in tapping, when used properly. YAMAWA engineering believes the best carbide materials suitable for taps are ultramicro grain tungsten carbide, or ultrafine grain carbide made of high cobalt.

Features of Carbide Taps

(1)Excellent durability with high toughness is obtainable.

(2) High anti-friction features are provided by the material's high hardness and comparatively high stringyness, which ultimately results in a longer tool life.

(3)Specially designed cutting angle and other dimensional features produce the internal threads with high tolerance accuracy and consistency.(4)Under certain tapping condition, YAMAWA carbide taps can be used even for tapping hard-to-machine materials.

Points to note during tapping with Carbide taps:

(1) Machine vibration, or run-out, can lead to Carbide tap chipping and premature failure. Tapping vibrations need to be kept to a minimum.

- (2) Tap holder should be a rigid type for a Carbide tap. A holder attachment with axial float, or radial float tends to promote Carbide tap breakage and chipping.
- (3) The hole to be tapped must be located correctly and on center ; any centering off or non-straight drilled hole tends to cause Carbide tap breakage due to deflection. Select correct hole depth with respect to tapping length (for blind hole only). It is especially important to prevent tap damage from chip packing and bottom thrusting in blind hole tapping.
- (4) Cutting lubricants select grade of lubricant. Improper flow of coolant, or lack of sufficient amount of lubricant, or cooling can increase the likelihood of Carbide tap chipping due to work material welding. Caution must be taken during dry machining to prevent chip welding to the tap.
- (5) Work pieces we provide Carbide taps with increased toughness, but Carbide taps are inferior to High Speed Steel (HSS) in the area of toughness. As a matter of fact Carbide taps have limited application due to this difference in toughness to HSS.

Wo	ork Material	Cutting Speed (m/min)	Cutting Fluid (General recommendation)	Cutting Fluid (JIS recommendation)
	Ordinary	15~25	Dry, light oil, water soluble oil	Un-soluble oil, 2nd kind No.11 and 13 Water soluble oil, W 1st kind No.1, W 2nd kind No.1
Cast Iron	Nodular Graphite	10~20	Light oil, water soluble oil	
	Malleable	10~20	Water soluble oil	
Aluminum		20~40	Light oil, water soluble oil	Un-soluble oil, 1st kind No.4-6
Copper		15~30	Light oil, water soluble oil	Un-soluble oil, 2nd kind No. 5-6 Water soluble oil, W 1st kind No. 1
Copper Alloy	Brass	20~30	Light oil, water soluble oil	
	Phosphor Bronze	15~30	Light oil, water soluble oil	-
Die Cast	Aluminum Alloy	15~25	Mixed oil of lard oil and kerosene	Un-soluble oil, 2nd kind No. 5-6 Water soluble oil, W 1st kind No.1
DIE-Cast	Zinc Alloy	12~20	Mixed oil of lard oil and kerosene	
Plastic	Thermosetting	15~25	Water soluble oil, air	Water soluble oil, W 2nd kind No.3
	Thermo Plastic	15~25	Water soluble oil, air	
Hard Rubber		15~30	Dry, air	

Commonly used material and cutting conditions.

Note : The table shows only general conditions. As for actual cutting operation, please consider the following points : (1) Machine Capacity, (2) Work piece(s), (3) Work Shape, (4) Setup (5) other factors.

Toughness and Hardness of Cemented Carbide and HSS

Chamfer wear and number of holes of Carbide taps and HSS taps

Carbide Taps examples and comparison of tool life

Classification		M2×0.4	M8×1.25	M6×1	M8×1.25	M10×1.25
Workpieco	Material	Plastic with glass fibre	ADC12	FC250	FC250	FC250
workpiece	Part's name	Electric Parts	Car Parts	Electric Parts	Car Parts	Car Parts
Thread	Tapping Hole. condition	¢1.6 Through	Ø6.7 Blind	<i>ф</i> 5.0 Blind	¢6.7 Blind	ϕ 8.7 Blind
Condition	Tapping Length	4mm	18mm	10mm	16mm	18mm
	Machine	Special Machine	Special Machine	4Spindles Machine	Spindles Machine	Special Machine
Condition of Use	Cutting Speed	6.3m/min	8.5m/min	8m/min	6m/min	5.7m/min
	Fluid	Dry	Water soluble	Water soluble	Water soluble	Water soluble
	CT Tap	10.000	75.400	53.000	18.860	38.500
Number of Holes	HSS Tap	200	1.000	1.000	300	500
	Comparison of Life	50	75.4	53	62.9	77

Note : In above all situations, HSS taps are used standard ones. To use CT properly is capable of a long tool life.

These datum have come from customers are useing CT taps.

Technical Informatior

8 Pipe Taps Standard

1. JIS Pipe Taps

The pipe thread standard (JIS B 0202,0203) was revised in 1982 to meet ISO standard. In the same year, JIS B 4445 (straight pipe thread taps) and JIS B 4446 (taper pipe thread taps) were also revised.

- OA part of the pipe thread standard was revised in 1966 to meet ISO, but in the 1982 revision, the ISO standard was defined in the main book of JIS and the old 1966 standard was defined in JIS Appendix. For Pipe Threads, which are specified in the main book of JIS and JIS Appendix, thread symbols are different but the nominal size 1/8 to 6 inch are same. In the 1998 revision, the contents of the main book of JIS and JIS Appendix are not changed.
- OISO tap standard for pipe threads is different from the JIS tap standard in style, size and thread limit. Like the pipe thread standard, in JIS tap standards for pipe threads, style, size and thread limits of ISO standard are specified in the main book of JIS and those of old JIS standard are in the JIS Appendix. For ISO standard (style and size), please refer to the next page.
- OThread limits of Rp and G taps are the same as the ISO standard. The thread limit of Rc taps is the same as the JIS class 2 of PT taps shown in JIS Appendix because Rc is not specified in the ISO standard. Therefore, both Rc taps and PT taps can be used interchangeably. For the relation between thread limit of internal threads and tap thread limit, please refer to the table below.
- OPipe Taps standard was revised in 1987. And tap designations shown in JIS Appendix were changed to Parallel Pipe Thread Taps for PF, Taper Pipe Thread Taps for PT, Parallel Pipe Thread Taps for PS.

Symbol of Pipe threads

Туре	Clas	ssification	Standard	JIS (ISO)	JIS Appendix
	Tapor Throad	Internal Thread		Rc	PT
Tapor Throad		External Thread	JIS B 0203—1982	R	PT
Taper Inteau	Parallel Thread	Internal Thread		Rp	PS
		External Thread		_	_
	Parallel Thread	Internal Thread		G	PF, A class
Darallel Thread		internal filleau	JIS B 0202-1982	_	PF, B class
Faraller Thread		External Thread		G, A class	PF, A class
		External micad		G, B class	PF, B class

Relation of pitch diameter tolerance zone between thread and tap

Comparison of the thread limit of taper pipe tap

ISO (Rc)			$(\mathbf{R}_{\mathbf{C}})$		Appen	dix (PT)		Thread Limit				
Norminal	Basic major	Number of		(110)	PT Tł	nread	S-PT T	⁻ hread	h	a	hd	
Size	Dia. of Gauge Plane	Threads*	Thread Length ℓ	Basic Diameter Postion ℓg	Thread Length ℓ	Basic Diameter Postion ℓ _g	Thread Length ℓ	Basic Diameter Postion ℓ _g	Basic Size	Tolerance (µm)	Basic Size	Tolerance (µm)
1/16	7.723	28	14	10.1	_	—	—	_	0.291	0~+30	0.291	±15
1⁄8	9.728	28	15	10.1	19	13	16.5	10.5	0.291	0~+30	0.291	±15
1⁄4	13.157	19	19	15	28	21	19.5	12.5	0.428	0~+40	0.428	±20
1⁄8	16.662	19	21	15.4	28	21	21	14	0.428	0~+40	0.428	±20
1/2	20.955	14	26	20.5	35	25	27	17	0.581	0~+50	0.581	±25
3⁄4	26.441	14	28	21.8	35	25	29	19	0.581	0~+50	0.581	±25
1	33.249	11	33	26	45	32	35	22	0.740	0~+60	0.740	±30
1 1⁄4	41.910	11	36	28.3	45	32	37.5	24.5	0.740	0~+60	0.740	±30
1 1/2	47.803	11	37	28.3	45	32	38.5	25.5	0.740	0~+60	0.740	±30
2	59.614	11	41	32.7	50	35	42.5	27.5	0.740	0~+60	0.740	±30
2 1⁄2	75.184	11	45	37.1	_	_	—	—	0.740	0~+60	0.740	±30
3	87.884	11	48	40.2	_	_	_	—	0.740	0~+70	0.740	±35
4	113.030	11	53	46.2	_	_	—	—	0.740	0~+70	0.740	±35

Note : JIS standard has 2 types of Taper pipe thread, PT and S-PT taps ISO standard has one type of Taper pipe thread Rc, which can substitute, PT and S-PT taps

೫ : Threads per inch

Technical nformatior

1⁄8

1⁄4

3∕8

1/2

5⁄8

3∕₄

7⁄8

1

1 1/8

1 1/4

1 1/2

1 3⁄4

2 1/4

2 1/2

2 3⁄4

3 1/2

3

4

2

28

19

19

14

14

14

14

11

11

11

11

11

11

11

11

11

11

11

11

0.9071

1.3368

1.3368

1.8143

1.8143

1.8143

1.8143

2.3091

2.3091

2.3091

2.3091

2.3091

2.3091

2.3091

2.3091

2.3091

2.3091

2.3091

2.3091

					-											
					The Thread	Limit	of ISO	(G)				The	Therad Lim	it of A	ppend	lix of PF
Norminal Size	Number of Threads*	Pitch (mm)	Major D	via		Pitch [Dia		Minar	Dia	Major D	ia		Pitch D	Dia	
			Basic Size (mm)	LT (+)	Basic Size (mm)	UT (+)	LT (+)	Tolerance	Basic Size (mm)	UT	Basic Size (mm)	LT (+)	Basic Size (mm)	UT (+)	LT (+)	Tolerance
1⁄16	28	0.9071	7.723	32	7.142	43	21	22	6.561		_		_			

9.147

12.301

15.806

19.793

21.749

25.279

29.039

31.770

36.418

40.431

46.324

52.267

58.135

64.231

73.705

80.055

86.405

98.851

111.551

43 21

50 25

50 25

57

57

57

57 28

72 36

72 36

72 36

72 36

72 36

72 36

87 43

87

87

87

87

87

43

43

43

43

43

28

28

28

22

25

25

29

29

29

29

36

36

36

36

36

36

44

44

44

44

44

44

8.566

11.445

14.950

18.631

20.587

24.117

27.877

30.291

34.939

38.952

44.845

50.788

56.656

62.752

72.226

78.576

84.926

97.372

110.072

Comparison of the thread limit for straight pipe taps

9.728

13.157

16.662

20.955

22.911

26.441

30.201

33.249

37.897

41.910

47.803

53.746

59.614

65.710

75.184

81.534

87.884

100.330

113.030

32

37

37

43

43

43

43

54

54

54

54

54

54

65

65

65

65

65

65

	—		—				_	
	9.728	65	9.147	40	20	20	8.566	40
	13.157	90	12.301	50	25	25	11.445	50
	16.662	90	15.806	50	25	25	14.950	50
	20.955	115	19.793	55	25	30	18.631	55
	22.911	115	21.749	55	25	30	20.587	55
	26.441	115	25.279	55	25	30	24.117	55
	30.201	115	29.039	55	25	30	27.877	55
Z	33.249	145	31.770	60	30	30	30.291	60
ot Sp	37.897	145	36.418	60	30	30	34.939	60
ecifi	41.910	145	40.431	65	30	35	38.952	65
ď	47.803	145	46.324	65	30	35	44.845	65
	53.746	145	52.267	65	30	35	50.788	65
	59.614	150	58.135	75	35	40	56.656	75

Unit: µm

Minar Dia

Tolerance Basic Size UT (mm) (+)

 $\ensuremath{\ens$

UT : The upper deviation

LT : The lower deviation

Comparison of the thread limit of taper pipe taps

Comp	Comparison of the thread limit of taper pipe taps																Ur	nit :	μm	
					The Thread	Limit	of ISO	(Rp)					The T	herad Lin	nit of	Appe	ndix o	f PS		
Norminal Size	Number of Threads*	Pitch (mm)	Major D	Dia		Pitch [Dia		Minar	Dia	Majo	r Dia			Pitch	Dia		Mina	ır Dia	
			Basic Size (mm)	LT (–)	Basic Size (mm)	UT (–)	LT (–)	Tolerance	Basic Size (mm)	UT	Basic Size (mm)	UT	LT (–)	Basic Size (mm)	UT (–)	LT (–)	Tolerance	Basic Size (mm)	UT	LT (–)
1⁄16	28	0.9071	7.723	43	7.142	14	43	29	6.561		_			—				_		
1⁄8	28	0.9071	9.728	43	9.147	14	43	29	8.566		9.728	+10	50	9.147	30	50	20	8.566	+10	50
1⁄4	19	1.3368	13.157	63	12.301	21	63	42	11.445		13.157	+ 5	75	12.301	50	75	25	11.445	+ 5	75
3⁄8	19	1.3368	16.662	63	15.806	21	63	42	14.950		16.662	+ 5	75	15.806	50	75	25	14.950	+ 5	75
1⁄2	14	1.8143	20.955	86	19.793	29	86	57	18.631		20.955	- 25	115	19.793	85	115	30	18.631	- 25	115
3⁄4	14	1.8143	26.441	86	25.279	29	86	57	24.117	Not :	26.441	- 25	115	25.279	85	115	30	24.117	- 25	115
1	11	2.3091	33.249	109	31.770	37	109	72	30.291	Spec	33.249	- 50	150	31.770	120	150	30	30.291	- 50	150
1 1⁄4	11	2.3091	41.910	109	40.431	37	109	72	38.952	ified	41.910	- 50	150	40.431	115	150	35	38.952	- 50	150
1 1⁄2	11	2.3091	47.803	109	46.324	37	109	72	44.845		47.803	- 50	150	46.324	115	150	35	44.845	- 50	150
2	11	2.3091	59.614	109	58.135	37	109	72	56.656		59.614	- 45	145	58.135	105	145	40	56.656	- 45	145
2 1⁄2	11	2.3091	75.184	130	73.705	43	130	87	72.226											
3	11	2.3091	87.884	130	86.405	43	130	87	84.926		*:	Threa	ids pe	er inch						
4	11	2.3091	113.030	130	111.551	43	130	87	110.072		UT:	The l	upper ower	deviation deviation	n					

LT : The lower deviation

2. American Pipe Thread Taps

American standard pipe thread has various types and are complicated. We show their symbols and engagement of threads as follows.

Standard	Symbol	Internal Thread	Maiting Thread	External Thread	Maiting Thread
	American Standard Taper Pipe Thread for General Use	NPT	NPT	NPT	NPT NPSC
	American Standard Straight Pipe Thread in Pipe Couplings	NPSC	NPT	_	_
Pipe Threads, General Purpose	American Standard Taper Pipe Threads for Railing Joints	NPTR	NPTR	NPTR	NPTR
(ANSI/ASME B1.20.1)	American Standard Straight Pipe Thread for Free- Fitting Mechanical Joints for Fixtures	NPSM	NPSM	NPSM	NPSM
	American Standard Straight Pipe Thread for Loose-Fitting Mechanical Joints with Locknuts	NPSL	NPSL	NPSL	NPSL
	American Standard Straight Pipe Threads for Loose- Fitting Mechanical Joints for Hose Couplings	NPSH	NPSH	NPSH	NPSH
	Dryseal American Standard Taper Pipe Thread	NPTF	NPTF PTF-SAE-SHORT	NPTF	NPTF,NPSF,NPSI PTF-SAE-SHORT
Dryseal Pipe Threads	Dryseal SAE Short Taper Pipe Thread	PTF-SAE-SHORT	NPTF	PTF-SAE-SHORT	NPTF NPSI
(ANSI B1.20.3)	Dryseal American Standard Fuel Internal Straight Pipe Thread	NPSF	NPTF	_	_
	Dryseal American Standard Intermediate Internal Straight Pipe Thread	NPSI	NPTF PTF-SAE-SHORT	_	_

Pair groups of external thread and internal thread.

Note : These symbols correspond to the name of American pipe thread.

These threads are

(1) Thread angle is 60°

(2) Taper of Taper Thread is 3/4" per foot.

(3) Fundamental height of triangle : H=Height of triangle thread profile H=0.866025P

(4) The difference between American Standard Pipe Thread for general use and Dryseal American Standard Pipe

- \cdot Crests and roots truncation of thread is different.
- \cdot The length of engagement for pipe thread is different by types.
- \cdot With regard to standard, Dryseal American Standard Pipe Thread is available in right hand.
- In accordance with ANSI B 94.9, 4 types of pipe thread are specified in American Pipe Thread Standard.

Please refer to next page about the relation between taps and threads and about thread tolerance.

tion

OClassification of American pipe thread taps

Designation	Symbol	Class	Material	Threads to be cut	Range
Straight Pipe Thread Tap	NPS	Ground Thread	HSS	NPSC,NPSM	1⁄8~1
Dryseal Straight Pipe Thread Tap	NPSF	Ground Thread	HSS	NPSF	1⁄8~3⁄4
Taper Pipe Thread Tap	NPT	Ground Thread	HSS	NPT	1 _{/16} ~2
Dryseal Taper Pipe Thread Tap	NPTF	Ground Thread	HSS	NPTF	1/16~2

Thread limit of American Pipe Thread Taps OStraight pipe thread taps for (NPS) G Class

Unit : mm Pitch diameter Minor diameter* Major diameter Nominal Size Max : Minor Dia. Max : Major Dia. Min : Major Dia. Tolerance Max : Pitch Dia. Min : Pitch Dia. Tolerance NPS 1/8 - 27 10.241 10.216 0.025 9.527 9.515 0.012 M-0.653 NPS 1/4 - 18 13.606 13.582 0.024 12.542 12.530 0.012 M-1.019 17.045 0.012 M-1.019 NPS 3/8 - 18 17.021 0.024 15.981 15.969 21.226 19.840 19.828 0.012 M-1.334 NPS 1/2 - 14 21.202 0.024 M-1.334 26.560 26.536 0.024 25.186 25.162 0.024 NPS 3/4 - 14 NPS 1 - 111/2 33.215 33.178 0.037 31.526 31.502 0.024 M-1.644

※ : Above dimensions change depending on actually measured.

OTaper pipe thread taps (NPT) G Class

								Unit : μ m
		Cr	est			Ro	oot	
Nominal Size	Г	Гс	F	-c	Т	r	F	Fr .
	Max	Min	Max	Min	Max	Min	Max	Min
NPT ¹ / ₁₆ - 27	68	32	78	37	80	32	92	37
NPT ¹ /8 - 27	68	32	78	37	80	32	92	37
NPT ¹ /4 - 18	92	48	106	56	101	48	116	56
NPT ³ /8 - 18	92	48	106	56	101	48	116	56
NPT ¹ / ₂ - 14	106	61	122	71	118	61	136	71
NPT ³ /4 - 14	106	61	122	71	118	61	136	71
NPT 1 - 11 ¹ /2	120	74	138	85	134	74	154	85
NPT 1 ¹ /4-11 ¹ /2	120	74	138	85	134	74	154	85
NPT 1 ¹ /2-11 ¹ /2	120	74	138	85	134	74	154	85
NPT 2 - 11 ¹ / ₂	120	74	138	85	134	74	154	85
NPT 2 ¹ /2 - 8	147	105	169	122	173	105	199	122
NPT 3 - 8	147	105	169	122	173	105	199	122

Thread limit of Dryseal American Pipe Thread Taps Ostraight pipe thread taps (NPSF) G Class

									Unit : mm
Nominal Sizo		Major diameter			Pitch diameter		Λ	/linor diameter	*
Norminal Size	Max : Major Dia.	Min : Major Dia.	Tolerance	Max : Pitch Dia.	Min : Pitch Dia.	Tolerance	Max : Major Dia.	Fr (Max)	Tr (Max)
NPSF ¹ / ₁₆ - 27	7.665	7.641	0.024	7.053	7.041	0.012	M-0.638	0.101	0.086
NPSF ¹ /8 - 27	10.012	9.988	0.024	9.400	9.388	0.012	M-0.638	0.101	0.086
NPSF ¹ /4 - 18	13.332	13.308	0.024	12.354	12.342	0.012	M-1.004	0.127	0.109
NPSF ³ /8 - 18	16.771	16.747	0.024	15.793	15.781	0.012	M-1.004	0.127	0.109
NPSF ¹ / ₂ - 14	20.929	20.905	0.024	19.601	19.589	0.012	M-1.354	0.127	0.109
NPSF ³ /4 - 14	26.276	26.251	0.025	24.947	24.936	0.011	M-1.354	0.127	0.109

* : Above dimensions change depending on actually measured.

○Taper pipe thread taps (NPTF) G Class

Unit : μ m

		Cr	est		Rc	ot
Nominal Size	Т	Ċ	F	c	Tr	Fr
	Max	Min	Max	Min	Max	Min
NPTF ¹ / ₁₆ - 27	110	89	127	103	86	101
NPTF ¹ /8 - 27	110	89	127	103	86	101
NPTF ¹ /4 - 18	132	110	152	127	109	125
NPTF ³ /8 - 18	132	110	152	127	109	125
NPTF ¹ / ₂ - 14	131	109	151	126	108	124
NPTF ³ / ₄ - 14	131	109	151	126	108	124
NPTF 1 - 11 ¹ /2	176	133	203	154	132	152
NPTF 1 1/4-11 1/2	176	133	203	154	132	152
NPTF 1 1/2-11 1/2	176	133	203	154	132	152
NPTF 2 - 11 1/2	176	133	203	154	132	152

19. Features of MC-Helical Thread Mills

OVarious nominal diameter internal threads of the same pitch can be produced with the same thread mills.

OThe same mill can be used for both right-hand and left-hand internal threads.

OChips become very minute, and troubles caused by chips are rarely expected.

OInternal threads of large diameter are obtainable even with low power machines.

OSize control (undersize or oversize) is easy on programming process. Thus, internal threads with voluntary thread limits can be obtained.

OWhen using MC-Helical threads mills for producing taper pipe threads, the threads are produced in a perfect cutting circle, and no stop marks which are inevitable in taper pipe threads tapping and high quality pressure-tight joint can be made.

Note : Basically, conventional milling is recommended due to excellent chip ejection. However, climb milling is recommended in the case of poor horse power and poor rigidity of the machine.

Comparison of internal threads cut by helical cuttter and by PT tap

By tap

When PT tap cuts internal threads, the tap cuts the threads with all cutting edges and the tap reverses from the position where each cutting edge on lands sticks into the material wall of internal threads. This results in the stop line due to a step caused by this sticking.

By helical cutter

Due to the thread cutting of 3 axis movement without reversing, the internal thread has no stop line.

Selection of tool diameter against the size of the internal screw

When cutting internal screws with MC-HLC, please choose the tool which diameter is

smaller than 70% of internal threads diameter. The cutter of using larger outside diameter is preferable due to its high rigidity. But thread milling cutters do not have screw lead. Please select thread milling cutters by referring to the shape & size table.

Cutting Condition

OCarbide helical cutter

Material	Cutting Speed (m/min)	Feed per tooth (mm/t)
Stractual Steel	50~250	0.02~0.1
Carbon Steel	50~200	0.02~0.1
Alloy Steel	30~180	0.02~0.1
Tool Steel	30~150	0.02~0.1
Stainless Steel	30~200	0.03~0.1
Cast Iron	50~150	0.03~0.15
Aluminum, Aluminum Alloy	50~300	0.03~0.15
Copper, Copper Alloy	50~180	0.03~0.15

OHSS helical cutter

Material	Cutting Speed (m/min)	Feed per tooth (mm/t)
Stractual Steel	25~45	0.02~0.05
Carbon Steel	20~40	0.02~0.05
Alloy Steel	15~30	0.02~0.05
Tool Steel	10~15	0.02~0.04
Stainless Steel	10~15	0.03~0.05
Cast Iron	30~50	0.03~0.08
Aluminum, Aluminum Alloy	50~90	0.03~0.05
Copper, Copper Alloy	40~80	0.03~0.05

Feeding speed

Feeding speed is decided by the characteristic of work materials. Feeding speed is an important factor because machining time, thread finish and tool durability are getting influenced by the feeding speed.

In the material of low tensile strength, feed per tooth can be set up rather large. However, if you set up feed per one tooth too large, thread milling cutters can cause deflection and may badly cause thread limit.

Incision of cutters

hink threads with AMAW

Generally, incision of cutter is decided by the machine programming in which the machine enables the cutter to cut the thread height in one revolution. MC helical cutters is so designed that its minor diameter does not cut and the same bored hole size as that for cutting tap is adopted.

Feed speed of fool

- $F = fz \cdot Z \cdot n \cdot (Dc-d)/Dc (mm/min)$
- fz : Feed per tooth
- z : Number of tooth
- n : Spindles RPM
- d : Diameter of tool
- Dc : Nominal size of internal thread

-Metric thread

[Minor diam basis] Tool incision

- KR=H-(H/8+H/4)+H/24+TD₂/4-(D'1-D1)/2
 - =(D1-D'1)/2+2H/3+TD2/4
 - $=(D_1 D_1)/2 + 0.577P + TD_2/4$

where,

- Dc : Nominal size of internal threads
- D1 : Basic minor diameter of internal threads
- D'1 : Minor diameter before cutting
- d : Outside diameter of tool
- H :0.866025P
- P : Pitch
- TD2 : Tolerance of pitch diameter for producing internal thread
- TD2/4 : Shrinkage after cutting (Set up in the middle of pitch diameter tolerance)
- H/24 : Difference between of basic thread profile and O.D. of the cutters.

Approaching and leaving to and from work material

On approaching and leaving to and from work material, the cutter must always be traversed in helical interpolating movement so that the cutter enables smooth cutting in and out. And it is necessary to cut the material gradually by the lead of screw thread. Otherwise, threads can be thinned.

-Metric thread

[Tool basis] Tool transverse

> Tool KR=Dc/2-d/2+H/24+TD2/4 =(Dc-d)/2+H/24+TD2/4 =(Dc-d)/2+0.036P TD2/4

Initial cutting A<B

20. Selecting different tap holder combinations by machine feed system

The function of machine feed systems

Fully synchronous feed (Rigid) tapping system

Spindle revolution and machine feed are synchronized, a perfect thread lead and feed per revolution are realized.

Feed by lead screws

A better-feed condition is realized because the tap is fed by a master lead screw shaft that has the same thread lead as this tap.

Feed by gear

The tap is fed at the same thread lead by a combinations of gears. This creates a better-feed to thread lead condition.

Asynchronous feed system

Best used when the spindle rotation and the machine feed are set independently, especially, if the machine feed value cannot be accurately predicted to be that of the tap thread lead.

Hydraulic or Pneumatic pressure feed system

Feed is controlled by a pressure regulation system which normally results in an inaccurate feed per revolution compared to the tap thread lead.

Manual feed

Feed is controlled by operator which is difficult to keep a stable amount of feed per revolution.

Holders aspects

Characteristics of tap self-guiding behavior

21 The common mechanics for a tap to cut oversize on an internal thread

21. The common mechanics for a tap to cut over size on an internal thread

Not Go gauge

* Use an axial/radial floating holder for its adjustment.

Not Go gauge

22. Trouble Shooting

Troubles			Breakage	Excessive wear		
Check point		Prevent excessive	Prevent clogging of chips	Тар	Workpiece	Тар
segments	Hardness	Use workpiece which has even structure and hardness.			OUse workpiece which has even structure and hardness.	
	Shape	Pay attention for tapping positive	ition and material thickness.		Pay attention for tapping position and material thickness.	
Workpiece	Bored hole	Provide bigger bored holes.Prevent work hardening.			 Provide bigger bored holes. Provide countersinking on hole entrance. Prevent work hardening. 	
		 Provide deeper tapping hole. Prevent slanting of hole. 				
Mach	hine	Avoid inconsistent feed.Adjust feed stroke.				
Jigs, He	olders	 Use tap holder of floating type. Use tap holder with torque limiter. 				
Cutting condition				OReduce cutting speed.		
Lubricant				 Provide proper timing for cha Prevent mixing of other oil in Use other cutting oil which pr Use cutting oil of non soluble Adjust flow of cutting oil and 	inging or filling-up of cutting oil. to cutting oil. revents cold welding. type. method of lubrication.	
On pr	ocess		 Remove unnecessary chips during tapping. Provide bigger space for chips disposal. 			
	Selection			 Use PO tap(through hole). Use SP tap(blind hole). Use Roll tap. 		
Тар	Design		Provide bigger chiproom.	 Change material of taps. Provide proper hardness on taps. 		 Use set tap. Change material of taps. Provide proper hardness on taps.
		 Reconsider length of cutting of Use set tap. 	chamfer.	Reconsider length of cutting chamfer.Provide nitride on taps.		
	Re-grind	Be careful about burning duriProvide proper land.	ng re-sharpening.		 Be careful about burning duri Increase re-sharpening freque 	ng re-sharpening. ency.

Technical Information

 \bigcirc : Most suitable solution \bigcirc

n O: Second most suitable solution

Un	dersize cutting of internal thre	ad	Bad surface, surface damaged				
Improve cutting performance	Selection and design of tap	Work material	Improve cutting performance	Prevent welding	Check cutting condition		
		Check workmaterial.			Provide proper hardness on workpiece material.		
		 Pay attention for tapping position and material thick- ness. 			 Pay attention for tapping position and material thick- ness. 		
 Adopt bigger tapping hole. Prevent work hardening of material. 							
			Prevent work hardening.	Provide bigger bored holes.	OPrevent slanting of hole.		
					OFeed according to pitch.		
					 Use the tap holder of floating type. Prevent vibrating of axis of tap Prevent centering-off with work piece. 		
			Reduce cutting speed.				
			 Provide proper timing for cha Prevent mixing of other oil int Use other cutting oil which pr Use cutting oil of non soluble 	nging or filling-up of cutting oil. o cutting oil. events cold welding. type.			
			Adjust flow of cutting oil and	method of lubrication.			
				Remove unnecessary chips			
Provide Nitride on taps.	©Use oversiza taps.		•Use spiral pointed taps (for through hole).	OProvide oxide coating on taps.	©Use oil hole taps.		
OProvide larger cutting angle.	 Adjust relief angle on cutting chamfer. Provide thread relief. 		 Provide larger cutting angle. Adjust relief angle on cutting chamfer. Provide more narrow margin. 	Change of no. of flutes on taps.	Reconsider length of cutting chamfer.		
	Increase re-sharpening frequenc	у.	Increase re-sharpening frequency.	Provide better surface fini- shing on flutes.			
			 Provide precise re-sharpening Be careful about burning duri 	 Provide precise re-sharpening. Be careful about burning during re-sharpening. 			

Technical Information

22. Trouble Shooting

Description of products

Troubles		Over-cutting of internal thread								
Check point		Provent upoven in	Provent over	Prevent unbalance						
Segments		feed of tap	cutting on thread	Prevent welding	Check cutting condition	on entering				
	Hardness	•Use workpiece which has even structure and hardness.								
	Shape									
workpiece	Bored hole			Provide bigger hole.	Prevent slanting of hole.	•Provide countersinking on the hole entrance.				
		Adjust a feed.								
Mach	hine	©Feed according to pitch.								
Jigs, H	olders				OUse tap holder of floating type.	 Prevent vibrating of axis of tap. Prevent centering-off with work piece. Use tap holder of floating type. 				
Cutting condition				Reduce cutting speed.						
Lubri	cant			 Use other cutting lubricant which prevents cold welding. Check the viscosity. 						
On pr	ocess									
	Selection			OProvide oxide surface treatment. Ouse tap with oil hole.						
Тар	Design		 Provide small cutting angle. Adjust chamfer relief angle. Check the width of thread margin. 	Provide short thread length.	Reconsider number of flules of tap.	Reconsider number of flules				
	Re-grind		Remove burrs on teeth after re-grinding.Provide proper land.		Provide precise re-sharpening.	Ocare for vibration.				

 $\ensuremath{\mathbb{O}}$: Most suitable solution

Technical Information

Table solution \bigcirc : Second most suitable solution

	Chip	ping		Tapping operation		
Prevent clogging of chips	Prevent excessive cutting torque	Improve tapping method	Тар	Prevent clogging of chips	Тар	
	•Use workpiece material which has even structure and hardness.					
		Pay attention for tapping position and material thick- ness.		If possible, use finer pitch tap	or shorter tapping length.	
Provide deeper tapping hole (Blind hole).	Provide bigger tapping hole.Prevent work hardnening.	Prevent slanting of holes.		 Reduce cutting speed. Provide deeper tapping hole (Blind hole). 		
●Provi	de countersinking on hole the en	trance.				
	•Avoid inconsistent feed.					
	OUse tapping holder with torque limiter.	 Prevent centering-off with workpiece. Prevent vibration of axis of tap. Use the tap holder of floating type. 			 Use the tap holder of floating type. Prevent vibration of axis of tap. Prevent centering-off with workpiece. 	
	Reduce cutting speed.			Reduce cutting speed.		
	•Use the other cutting oil which prevent cold welding.			●Check the viscosity.		
 Remove unnecessary chips during tapping. Provide bigger space for chip disposal. 				 Remove unnecessary chips du Provide bigger space for chip 	uring tapping. disposal.	
			 Use PO taps (Through hole). Use SP taps (Blind hole). Use Roll tap. 		 Use PO taps (Through hole). Use SP taps (Blind hole). Use Roll tap. 	
Provide bigger chip room.			 Change material of tap. Provide smaller cutting angle. Provide proper hardness. 	 Provide bigger chip room. Reconsider length of cutting chamfer. 		
	 Reconsider length of c Reduce cutting speed. Adjust relief angle on 	utting chamfer. cutting chamfer.		Provide shorter thread length	to tap.	
	●Be careful about burni	ng during re-sharpening.				

Technical Information

Technical-54 703

Think threads with

23. Center Drills

Center Drills are the tool for making center hole. Center Drills are also used for positioning before drilling, and for chamfering of the hole.

Names of each part

Shape of center hole and center

Type A (60°) Center hole & 60°center	Type B (60°) Center hole & 60°center	Type A (90°) Center hole & 90°center	Type R Center hole & 60°center
			8

Advantage of Type B Center holes

Note : Advantage of Type B center holes : B type center drill protect the 60° conical bearing surface from scar or distortion resulting from a blow, roughness of workpiece surface or burrs around the hole.

Advantage of Type R Center holes

Note : R type center hole stably holds the center. It also some of advantage of B type center hole.

Technica Informatic

24. Table of recommend centering condition

Table of recommend centering condition.

HSS (PE-Q PE-90°)

Work material	Soft struct SS	tural steels 400	Carbon steels S50C		Alloy steels SCM440		Stainless steels SUS304		Aluminum alloy casting AC4B	
Cutting speed (m/min)	30-	~40	22~30		20~25		10~15		70~100	
Diameter (mm)	Revolution (min ⁻¹)	Feed per revolution (mm/rev)								
3	3700	0.04~0.08	2750	0.04~0.08	2400	0.04~0.08	1350	0.04~0.08	9000	0.10~0.22
4	2800	0.05~0.10	2050	0.05~0.10	1800	0.05~0.10	1000	0.05~0.10	6750	0.12~0.26
6	1850	0.06~0.12	1400	0.06~0.12	1200	0.06~0.12	850	0.06~0.12	4500	0.15~0.30
8	1400	0.08~0.15	1050	0.08~0.15	900	0.08~0.15	500	0.08~0.15	3400	0.18~0.35
10	1100	0.10~0.18	850	0.10~0.18	700	0.10~0.18	400	0.10~0.18	2700	0.21~0.40
12	950	0.12~0.22	700	0.12~0.22	600	0.12~0.22	350	0.12~0.22	2250	0.25~0.45
16	700	0.16~0.26	500	0.16~0.26	450	0.16~0.26	250	0.16~0.26	1700	0.32~0.50
20	550	0.20~0.35	400	0.20~0.35	350	0.20~0.35	200	0.20~0.35	1350	0.40~0.60

HSS+TICN (PE-Q-V PE-90°)

Work material	Soft struct	ural steels 400	Carboi S5	n steels 60C	Alloy steels SCM440		Thermal refined steels SCM440 (30~35HRC)		Stainless steels SUS304		Aluminum alloy casting AC4B	
Cutting speed (m/min)	38-	~48	28-	~38	26~33		13~17		13~20		84~120	
Diameter (mm)	Revolution (min ⁻¹)	Feed per revolution (mm/rev)	Revolution (min ⁻¹)	Feed per revolution (mm/rev)	Revolution (min ⁻¹)	Feed per revolution (mm/rev)	Revolution (min ⁻¹)	Feed per revolution (mm/rev)	Revolution (min ⁻¹)	Feed per revolution (mm/rev)	Revolution (min ⁻¹)	Feed per revolution (mm/rev)
3	4550	0.04~0.08	3500	0.04~0.08	3150	0.04~0.08	1800	0.03~0.06	1750	0.04~0.08	10800	0.10~0.22
4	3400	0.05~0.10	2650	0.05~0.10	2350	0.05~0.10	1200	0.04~0.08	1300	0.05~0.10	8100	0.12~0.26
6	2300	0.06~0.12	1750	0.06~0.12	1550	0.06~0.12	800	0.05~0.10	900	0.06~0.12	5400	0.15~0.30
8	1700	0.08~0.15	1300	0.08~0.15	1150	0.08~0.15	600	0.06~0.12	650	0.08~0.15	4050	0.18~0.35
10	1350	0.10~0.18	1050	0.10~0.18	950	0.10~0.18	500	0.08~0.15	500	0.10~0.18	3250	0.21~0.40
12	1150	0.12~0.22	900	0.12~0.22	800	0.12~0.22	400	0.10~0.18	450	0.12~0.22	2700	0.25~0.45
16	850	0.16~0.26	650	0.16~0.26	600	0.16~0.26	300	0.12~0.22	350	0.16~0.26	2050	0.32~0.50
20	700	0.20~0.35	500	0.20~0.35	450	0.20~0.35	250	0.16~0.26	250	0.20~0.35	1600	0.40~0.60

Carbide+TiAIN (C-PE-Q-V PE-90°)

Work material	Soft struct	ural steels 400	Carbor S5	n steels 0C	Alloy steels SCM440		Thermal refined steels SCM440 (30~35HRC)		Stainless steels SUS304		Aluminum alloy casting AC4B	
Cutting speed (m/min)	87~	102	65-	-78	60~70		32~40		35~45		120~160	
Diameter (mm)	Revolution (min ⁻¹)	Feed per revolution (mm/rev)	Revolution (min ⁻¹)	Feed per revolution (mm/rev)	Revolution (min ⁻¹)	Feed per revolution (mm/rev)	Revolution (min ⁻¹)	Feed per revolution (mm/rev)	Revolution (min ⁻¹)	Feed per revolution (mm/rev)	Revolution (min ⁻¹)	Feed per revolution (mm/rev)
3	10050	0.04~0.08	7600	0.04~0.08	6900	0.04~0.08	3800	0.04~0.08	4250	0.04~0.08	14850	0.10~0.22
4	7500	0.05~0.10	5700	0.05~0.10	5150	0.05~0.10	2850	0.05~0.10	3200	0.05~0.10	11150	0.12~0.26
6	5000	0.06~0.12	3800	0.06~0.12	3450	0.06~0.12	1900	0.06~0.12	2100	0.06~0.12	7450	0.15~0.30
8	3750	0.08~0.15	2850	0.08~0.15	2600	0.08~0.15	1450	0.08~0.14	1800	0.08~0.15	5550	0.18~0.35
10	3000	0.10~0.18	2300	0.10~0.18	2050	0.10~0.18	1150	0.10~0.16	1250	0.10~0.18	4450	0.21~0.40
12	2500	0.12~0.22	1900	0.12~0.22	1700	0.12~0.22	950	0.10~0.18	1050	0.12~0.22	3700	0.25~0.45
16	1900	0.16~0.26	1400	0.16~0.26	1300	0.16~0.26	700	0.12~0.22	800	0.16~0.26	2800	0.32~0.50

1. Above Condition done by Water Soluble oil.

2. 20% lower feed is recommended when centering prosess to inclined plane.

3. 20% lower feed is recommended in the case of long shank point drills.

Reference of drilling condition for Center drills (HSS)

Reference table of cutting speed and feed per revolution (when substrate is HSS)

· Drilling speed (Cone diameter at the larger end)

Workpiece materials	Drilling speed	Drill diameter	Feed per revolution
Low carbon steels	15~30	1~ 3	0.02~0.07
Carbon steels	15~30	3~ 4	0.04~0.12
Alloy steels	10~25	4~ 6	0.06~0.17
Stainless steels	5~12	6~ 8	0.10~0.20
Cast iron	8~15	8~10	0.14~0.23
		10~12	0.18~0.26

Reference of drilling condition for Center drills (Carbide)

Reference table of cutting speed and feed per revolution (when substrate is Carbide)

· Drilling speed (Cone diameter at the larger end)

Workpiece materials	Drilling speed	Drill diameter	Feed per revolution
Low carbon steels	30~50	1	0.01 ~0.03
Carbon steels	30~50	2	0.01 ~0.035
Alloy steels	20~40	3	0.015~0.05
Stainless steels	15~25	4	0.02 ~0.06
Cast iron	30~50	5	0.03 ~0.07
		6	0.04 ~0.07

Reference of drilling condition for NC-SD-V Reference table of drilling speed, feed per revolution

· Drilling speed (Tool diameter)

Workpiece materials	Drilling speed
Low carbon steels	25~40
Carbon steels	25~32
Alloy steels	15~25
Alloy tool steels	7~12
Stainless steels	7~12
Cast iron	20~35
Aluminum	60~90

Tool diameter	Feed per revolution
3	0.03~0.06
4	0.05~0.10
6	0.08~0.15
8	0.10~0.18
10	0.15~0.20
12	0.15~0.25
16	0.15~0.30
20	0.20~0.30
25	0.20~0.30

Reference of chamfering condition for Countersinks

Reference table of drilling speed, feed per revolution

· Drilling speed (Tool diameter)

Drilling speed					
Single edge	Multiple edges				
18~25	20~27				
18~25	20~25				
8~16	8~15				
8~16	8~15				
8~13	5~10				
20~30	15~25				
20~70	20~80				
	Drilling Single edge 18~25 18~25 8~16 8~16 8~13 20~30 20~70				

Tool diamotor	Feed per revolution					
roordiameter	Single edge	Multiple edges				
4	0.02~0.04	0.03~0.10				
6	0.03~0.05	0.05~0.12				
8	0.05~0.07	0.07~0.15				
10	0.06~0.09	0.10~0.16				
12	0.07~0.10	0.10~0.20				
16	0.08~0.13	0.10~0.20				
20	0.09~0.15	0.10~0.25				
25	0.10~0.16	0.15~0.30				

25. Thread Series

Metric Threads

Meti	ric Thre	eads												Ur	nit : mm
Ν	lominal Di	a.						Pitch	*						
Column	Column	Column	Coarse												
1	2	3	0.25						:		:		:		02
10	1.1		0.25												0.2
1.2	1.4		0.25												0.2
1.6	1.8		0.35												0.2
2	0.0		0.4											0.25	0.2
2.5	2.2		0.45										0.35	0.25	
3	3.5		0.5 0.6										0.35 0.35		
4	15		0.7									0.5			
5	4.5		0.8									0.5			
6		5.5	1								0.75	0.5			
8	7		1 1.25							1	0.75 0.75				
10		9	1.25 1.5						1 25	1	0.75				
10		11	1.5					4.5	1.20	1	0.75				
12	14		2					1.5	1.25 1.25	1					
16		15	2					1.5		<u>1</u> 1		-			
	18	17	2.5				2	1.5 1.5		1 1					
20	00		2.5				2	1.5		1					
24	22		3				2	1.5		1		2 2 2 2			
		25 26					2	1.5 1.5		1					
	27	28	3				2	<u>1.5</u> 1.5	-	<u>1</u> 1					
30		32	3.5			3	2	1.5		1					
	33	02	3.5			3	2	1.5							
36		35	4			3	2	1.5							
	39	38	4			3	2	1.5 1.5				* * *			
42		40	4.5		4	3	2	1.5							
48	45		4.5 5		4	3 3	2 2	1.5 1.5							
	52	50	5		4	3 3	2	1.5 1.5							
56		55	5.5		4	3	2	1.5							
50		58	5.5		4	3	2	1.5							
	60	62	5.5		4	3	2	1.5							
64		65	6		4	3 3	2 2	1.5 1.5							
	68	70	6	6	4 4	3	2	1.5 1.5							
72		75		6	4	3	2	1.5							
	76	70		6	4	3	2	1.5				2 2 2 2 2			
80		78		6	4	3	2	1.5				•			
	85	82		6	4	3	2 2								
90	95			6	4	3 3	2 2								
100	105			6	4	3	2								
110	115			6	4 4	3	2								
125	120			6	4	3	2					-			
120	130	105		6	4	3	2								
140		135		6	4	3 3	2 2								
	150	145		6 6	4	3 3	2								

 $\ensuremath{\mathfrak{K}}$: Please select the first column by priority. And select second column and third column if necessary.

Unifined Threads

Conversion Table

Threads per inch	Pitch (mm)
(25.4mm)	
100 80	0.2540 0.3175
72 64	0.3528 0.3969
60	0.4233
56 48	0.4536
44	0.5773
40 36	0.6350
32	0.7938
28 27	0.9071 0.9407
24 20	1.0583
19	1,3368
18	1.4111
14	1.8143
13	1.9538
12 11 1/2	2.1167
11	2.3091
9	2.5400
8	3.1750
6	4.2333
5 4 1/2	5.0800 5.6444
4	6.3500

Si	ze	Nomin	al Dia.	Threads per inch										
Column	Column			Coarse	Coarse Fine Extra Fine Constant pitch series									
1	2	inch	mm	UNC	UNF	UNEF	4UN	6UN	8UN	12UN	16UN	20UN	28UN	32UN
No 0		0.0600	1 524		80									
140. 0	No. 1	0.0730	1.854	64	72									
No. 2		0.0860	2.184	56	64									
	No. 3	0.0990	2.515	48	56									
No. 4		0.1120	2.845	40	48									
No. 5		0.1250	3.175	40	44									
No. 6		0.1380	3.505	32	40									UNC
No. 8		0.1640	4.166	32	36									UNC
No.10	NI- 10	0.1900	4.826	24	32									UNF
	NO.12	0.2160	5.486	24	28	32							UNF	UNEF
14		0.2500	6 250	20	29	22						LINC	LINE	LINEE
5/16		0.2300	7 938	18	20	32						20	28	LINEE
3/8		0.3750	9.525	16	24	32					UNC	20	28	UNEF
7/16		0.4375	11.112	14	20	28					16	UNF	UNEF	32
1/2		0.5000	12.700	13	20	28					16	UNF	UNEF	32
9⁄16		0.5625	14.288	12	18	24				UNC	16	20	28	32
5⁄8		0.6250	15.875	11	18	24				12	16	20	28	32
	11/16	0.6875	17.462			24				12	16	20	28	32
3/4		0.7500	19.050	10	16	20				12	UNF	UNEF	28	32
74	13/16	0.8125	20.638			20				12	16	UNEF	28	32
1/8	154 -	0.8750	22.225	9	14	20				12	16	UNEF	28	32
4	19/16	1 0000	23.812	8	12	20					10	UNEF	28	32
	11/16	1.0625	26.988	0	12	18			8	12	16	20	28	- 52
11/8		1.1250	28.575	7	12	18			8	UNE	16	20	28	
	1 3⁄16	1.1875	30.162			18			8	12	16	20	28	
11/4		1.2500	31.750	7	12	18			8	UNF	16	20	28	
	1 5⁄16	1.3125	33.338			18			8	12	16	20	28	
13⁄8		1.3750	34.925	6	12	18		UNC	8	UNF	16	20	28	
	17/16	1.4375	36.512			18		6	8	12	16	20	28	
11/2	407	1.5000	38.100	6	12	18		UNC	8	UNF	16	20	28	
156	19/16	1.5625	39.688			18		6	8	12	16	20		
14/8	1 11/16	1.6250	41.275			10		6	8	12	10	20		
13/4	1.010	1.0675	42.002	5		10		6	8	12	16	20		
173	113/16	1.8125	46.038	<u> </u>				6	8	12	16	20		
17/8		1.8750	47.625					6	8	12	16	20		
	1 15/16	1.9375	49.212					6	8	12	16	20		
2		2.0000	50.800	4 1/2				6	8	12	16	20		
	21/8	2.1250	53.975					6	8	12	16	20		
21/4		2.2500	57.150	4 1/2				6	8	12	16	20		
01/	23/8	2.3750	60.325					6	8	12	16	20		
292	25%	2.5000	63.500	4			UNC	6	8	12	16	20		
23/4	270	2.0250	69.850	4			4 LINC	6	8	12	16	20		
2/4	27/8	2.7500	73.025	-			4	6	8	12	16	20		
3		3.0000	76.200	4			UNC	6	8	12	16	20		
	31/8	3.1250	79.375				4	6	8	12	16			
31/4		3.2500	82.550	4			UNC	6	8	12	16			
0.11	33/8	3.3750	85.725			L	4	6	8	12	16			
31/2	05/	3.5000	88.900	4			UNC	6	8	12	16			
034	3%	3.6250	92.075				4	6	8	12	16			
074	37/8	3.7300	95.200	4				6	8	12	16			
4	0,0	4.0000	101.600	4			UNC	6	8	12	16			
	41/8	4.1250	104.775	· · ·			4	6	8	12	16			
41/4		4.2500	107.950				4	6	8	12	16			
	43⁄8	4.3750	111.125				4	6	8	12	16			
41/2		4.5000	114.300				4	6	8	12	16			
404	45⁄8	4.6250	117.475				4	6	8	12	16			
43/4	476	4.7500	120.650				4	6	8	12	16			
E	41/8	4.8/50	123.825				4	6	8	12	16			
Э	51/0	5.0000	127.000				4	e e	d g	12	10			
51/4	070	5 2500	133,350				4	6	8	12	16			
	53/8	5,3750	136,525				4	6	8	12	16			
51/2		5.5000	139.700				4	6	8	12	16			
	55/8	5.6250	142.875				4	6	8	12	16			
5¾		5.7500	146.050				4	6	8	12	16			
	51/8	5.8750	149.225				4	6	8	12	16			
6		6.0000	152.400				4	6	8	12	16			

* : Please select the first column by priority. And select second column and third column if necessary.

General size list of metric trapezoidal threads

									Un	it : mm
	1.5	2	3	4	5	6	7	8	10	12
Tr 8	1.5									
Tr 9	1.5	2								
Tr 10	1.5	2								
Tr 11		2	3							
Tr 12		2	3							
Tr 14		2	3							
Tr 16		2		4						
Tr 18		2		4						
Tr 20		2		4						
Tr 22			3		5			8		
Tr 24			3		5			8		
Tr 26			3		5			8		
Tr 28			3		5			8		
Tr 30			3			6			10	
Tr 32			3			6			10	
Tr 34			3			6			10	
Tr 36			3			6			10	
Tr 38			3				7		10	
Tr 40			3				7		10	
Tr 42			3				7		10	
Tr 44			3				7			12
Tr 46			3					8		12
Tr 48			3					8		12

When the tap for the trapezoidal threads not listed in the catalogue is required, please contance Yamawa sales.

Think threads with

26. Basic profile of threads

Metric Screw Threads

Whitworth Screw Threads

Miniature Screw Threads

Taper Pipe Threads

Unified Screw Threads

Screw Threads for Sewing Machine

Parallel Pipe Threads

Taper Pipe Threads (Parallel)

Dryseal American Standard Taper Pipe Threads

	Threads per inch
$\begin{array}{l} H = 0.866025P \\ P = 25.4/n \\ n = Threads per inch \end{array}$	27
	18
	14

Truncation Threads per inch

27

18

14

11.5

8

Section Max.

Min.

Max.

Min.

Max.

Min.

Max.

Min.

Max.

Min.

Truncation Unit : m							
Threads per inch	Section	fc					
07	Max.	0.094P	0.140P				
21	Min.	0.047P	0.094P				
10	Max.	0.078P	0.109P				
10	Min.	0.047P	0.078P				
14	Max.	0.060P	0.085P				
14	Min.	0.036P	0.060P				
115	Max.	0.060P	0.090P				
11.5	Min.	0.040P	0.060P				
0	Max.	0.055P	0.076P				
0	Min.	0.042P	0.055P				

Unit : mm

0.096P

0.033P

0.088P

0.033P

0.078P

0.033P

0.073P

0.033P

0.062P

0.033P

Metric Trapezoidal Screw Threads

29° Trapezoidal Screw Threads

Production data

Technical Informatior

27. Symbols for Standard Threads

Japan

Thread symbols	Kinds of threads	Related Standards
М	Metric screw threads	JIS B 0205-1~0205-4
S	Miniature screw threads	JIS B 0201
UNC	Unified threads, Coarse series	JIS B 0206
UNF	Unified threads, Fine series	JIS B 0208
Tr	Metric Trapezoidal screw threads	JIS B 0216
R	Taper external pipe threads	JIS B 0203 (JIS main book)
Rc	Taper internal pipe threads	JIS B 0203 (JIS main book)
Rp	Parallel internal pipe threads	JIS B 0203 (JIS main book)
G	Parallel pipe threads	JIS B 0202 (JIS main book)
PF	Parallel pipe threads	JIS B 0202 (JIS Appendix)
PT	Taper pipe threads	JIS B 0203 (JIS Appendix)
PS	Taper pipe threads (Parallel)	JIS B 0203 (JIS Appendix)
CTC	Screw threads for rigid metal thin-walled conduit and fitting	JIS C 8305
CTG	Screw threads for rigid metal thick-walled conduit and fitting	JIS C 8305
BC	Cycle threads	JIS B 0225
SM	Screw threads for sewing machine	JIS B 0226 (2001.2.20repeal)
E	Electric socket and lamp-base threads	JIS C 7709
V	Tire valve threads of automobile	JIS D 4207
CTV	Tire valve threads of cycle	JIS D 9422

Thread symbols	Kinds of threads	Related Standards
М	ISO Metric threads	ISO 261
S	ISO Miniature screw threads	ISO R 1501
Tr	ISO Metric trapezoidal screw threads	ISO 2902
UNC	ISO Unified threads, coarse series	ISO 263
UNF	ISO Unified threads, fine series	ISO 263
UNEF	ISO Unified threads, extra fine series	ISO 263
UN	ISO Unified threads, constant pitch series	ISO 263
UNJC	Unified threads (MIL Standard) coarse	ISO 3161
UNJF	Unified threads (MIL Standard) fine	ISO 3161
UNJEF	Unified threads (MIL Standard) extra fine	ISO 3161
UNJ	Unified threads (MIL Standard) constant pitch series	ISO 3161
MJ	Metric threads, MIL Standard	ISO 5855
R	Taper external pipe threads	ISO 7/1
Rc	Taper internal pipe threads	ISO 7/1
Rp	Parallel internal pipe threads	ISO 7/1
G	Parallel pipe threads	ISO 228/1
GL	Glass container threads	ISO R 1115
V	Tire valve threads	ISO 4570/1~3

27. Symbols for Standard Threads

America

Thread symbols	Kinds of threads	Related Standards
UN	Unified inch screw threads	ANSI B 1.1
UNC/UNRC	Unified coarse thread series	ANSI B 1.1
UNF/UNRF	Unified fine thread series	ANSI B 1.1
UNEF/UNREF	Unified extra-fine thread series	ANSI B 1.1
4UN/4UNR	Unified constant-pitch series with 4-threads	ANSI B 1.1
6UN/6UNR	Unified constant-pitch series with 6-threads	ANSI B 1.1
8UN/8UNR	Unified constant-pitch series with 8-threads	ANSI B 1.1
12UN/12UNR	Unified constant-pitch series with 12-threads	ANSI B 1.1
16UN/16UNR	Unified constant-pitch series with 16-threads	ANSI B 1.1
20UN/20UNR	Unified constant-pitch series with 20-threads	ANSI B 1.1
28UN/28UNR	Unified constant-pitch series with 28-threads	ANSI B 1.1
32UN/32UNR	Unified constant-pitch series with 32-threads	ANSI B 1.1
UNS/UNRS	Unified threads of special diameters, pitches and lengths of engagement	ANSI B 1.1
NR	American National thread with a 0.108p to 0.144p controlled root radius	MIL-B-7838
Acme	Acme screw threads	ANSI B 1.5
Stub-Acme	Stub Acme screw threads	ANSI B 1.8
Butt	Buttress inch screw threads	ANSI B 1.9
UNM	Unified miniature thread series	ANSI B 1.10
NC5	Class 5 interference-fit thread	ANSI B 1.12
NPT	American Standard taper pipe threads for general use	ANSI/ASME B 1.20.1
NPTR	American Standard taper pipe threads for railing joints	ANSI/ASME B 1.20.1
NPSC	American Standard straight pipe thread in pipe couplings	ANSI/ASME B 1.20.1
NPSL	American standard straight pipe threads for loose-fitting mechanical joints with locknuts	ANSI/ASME B 1.20.1
NPSM	American Standard straight pipe threads for free-fitting mechanical joints for fixture	ANSI/ASME B 1.20.1
NPSH	American Standard straight pipe threads for loose-fitting mechanical joints for hose couplings	ANSI/ASME B 1.20.1
NPTF	Dryseal American Standard taper pipe threads	ANSI B 1.20.3, 1.20.4
F-PTF	Dryseal fine taper pipe thread series	ANSI B 1.20.3, 1.20.4
PTF-SAE SHORT	Dryseal SAE short taper pipe threads	ANSI B 1.20.3, 1.20.4
PTF-SPL SHORT	Dryseal special short taper pipe threads	ANSI B 1.20.3, 1.20.4
PTF-SPL EXTRA SHORT	Dryseal special extra short taper pipe threads	ANSI B 1.20.3, 1.20.4
SPL-PTF	Dryseal special taper pipe threads	ANSI B 1.20.3, 1.20.4
NPSI	Dryseal American Standard intermediate internal straight pipe threads	ANSI B 1.20.3, 1.20.4
NPSF	Dryseal American Standard fuel internal straight pipe threads	ANSI B 1.20.3, 1.20.4
ANPT	Aeronautical National Form taper pipe threads	MIL-P-7150
NGO	National gas outlet threads	ANSI B 57.1
NGS	National gas straight threads	ANSI B 57.1
NGT	National gas taper threads	ANSI B 57.1
SGT	Special gas taper threads	ANSI B 57.1
NH	Hose coupling and firehose coupling threads	USAS B 2.4
NHR	Hose coupling and firehose coupling threads	USAS B 2.4
NPSH	Hose coupling and firehose coupling threads	USAS B 2.4
AMO	American standard microscope objective threads	ANSI B 1.11

Think threads with Technical-63 712

British*

Thread symbols	Kinds of threads	Related Standards
UNS	Unified special series	BS 1580
B.S.W.	British Standard Whitworth coarse threads	BS 84
B.S.F.	British Standard fine threads	BS 84
BSP	British Standard pipe thread (corresponding to R, Rc, Rp of ISO)	BS 21,2779
B.A.	B.AScrew threads	BS 93
Acme	General purpose, Acme screw threads	BS 1104
Buttress	Buttress threads	BS 1657
BSC	Cycle threads	BS 811
BSMO	Microscope objective threads	BS 3569
E	Edison screw threads	BS 5042

 $\ensuremath{\ens$

German*

Thread symbols	Kinds of threads	Related Standards
GL	Glass containers thread	DIN 168
S	Buttress thread	DIN 513,2781,20401
Rd	Knuckle thread	DIN 262,3182,7273,15403,20400
W	Whitworth-gewinde	DIN 168,477,6630,49301
KS,KT	Screw siles for packages made of Plastics	DIN 6063
E	Edison screw thread	DIN 40400
Pg	Steel conduit thread	DIN 40430
Vg	Automobil tire valve thread	DIN 7756
Gf	Thread for freezing pipes	DIN 4930
Gg	Threads for drill pipe	DIN 4941,20314
HA	Thread for bone screws and nuts	DIN 58810
FG	Bicycle threads	DIN 79012

 $\ensuremath{\mathfrak{K}}$: We left out the symbols after ISO standard was adopted.

28. Cross chart of thread cutting tool standard

Tap and Die names	SIL	JSCTA	ISO	ANSI	BS	DIN
General specification Measuring method Technical requirement		4051 4053	8830			2197
Thread limit (Metric) Thread limit (Pipe)		4052	2857 5969			
Hand taps (Metric coarse) Hand taps (Metric fine) Hand taps (Unified coarse) Hand taps (Unified fine) Hand taps (Parallel pipe thread)	B4430 B4430 B4432 B4438 B4445	4105 4106 4107	529 529 529 529 2284	B94.9 B94.9 B94.9 B94.9 B94.9	949 949 949 949 949	352 2181
Hand taps (Taper pipe thread) Hand taps (American parallel pipe thread) Hand taps (American taper pipe thread) Hand taps (American dryseal parallel pipe thread) Hand taps (American dryseal taper pipe thread)	B4446	4113 4114 4115 4116	2284	B94.9 B94.9 B94.9 B94.9 B94.9	949	
Nut taps (Metric coarse) Nut taps (Metric fine) Nut taps (Unified coarse) Nut taps (Unified fine) Machine taps (Metric coarse)	B4433	4109 4110 4111 4112		B94.9	357	371,376
Machine taps (Metric fine) Bent shank taps (Metric coarse) Bent shank taps (Metric fine) Bent shank taps (Unified coarse) Bent shank taps (Unified fine)		4101 4102 4103 4104				374
Long shank machine taps (Metric thread) Long shank machine taps (Inch thread) Spiral pointed taps Spiral fluted taps Shell taps (Metric thread)		4153 4153 4155 4154 4117	2283 2283	B94.9 B94.9		
Pulley taps Thread Forming taps Blanks for carbide taps Thread cutting round dies (Metric coarse, Adjustable) Thread cutting round dies (Metric fine, Adjustable)	B4451 B4451			B94.9 B94.9 B94.1		223 223
Thread cutting round dies (Metric, Solid) Thread cutting round dies (Unified coarse adjustable) Thread cutting round dies (Unified fine adjustable) Thread cutting round dies (Unified thread) Thread cutting round dies (Parallel pipe thread)	B4451 B4451 B4451 B4451 B4455		2568 2568 4231		1127 1127 1127 1127	223 5158
Thread cutting round dies (Taper pipe thread) Hexagon dies	B4456		4230 7226		1127	5159 382

Symbols : Organization names

ISO : International Organization for Standardization JIS : Japanese Industrial Standards Committee JSCTA : The Japan Solid Cutting Tools' Association

- ANSI : American National Standards Institute BS : British Standards Institution, UK
- DIN: Deutsches Institiut fur Normung

Technical formation

Think threads with

714

29. Hardness conversion table

Conversion table from Rockwell C hardness of steel. (Approximate)

Partness Partness Sonderf office Longe Durate Unit cost Sonderf office Sonderf </th <th>Rockwell</th> <th>Vickers</th> <th colspan="2">Brinell Hardness</th> <th>Roe</th> <th>ckwell Hardnes</th> <th>SS^{₩2}</th> <th>Rockwe</th> <th>II Superficial H</th> <th>ardness</th> <th>Shore</th> <th>Tensile</th> <th>Rockwell</th>	Rockwell	Vickers	Brinell Hardness		Roe	ckwell Hardnes	SS ^{₩2}	Rockwe	II Superficial H	ardness	Shore	Tensile	Rockwell
HPC HPC <th>Hardness</th> <th>Hardness</th> <th>Standard ball</th> <th>Tungsten Carbide ball</th> <th>A scale</th> <th>B scale</th> <th>D scale</th> <th>15-N scale</th> <th>30-N scale</th> <th>45-N scale</th> <th>Hardness</th> <th>Strength MPa^{∗*1}</th> <th>Hardness^{*2}</th>	Hardness	Hardness	Standard ball	Tungsten Carbide ball	A scale	B scale	D scale	15-N scale	30-N scale	45-N scale	Hardness	Strength MPa ^{∗*1}	Hardness ^{*2}
686 940 - - 76.9 93.2 84.4 75.4 97.4 - - 68.6 877 986 86.5 - - 84.5 - 76.4 92.6 88.8 73.3 92 - 66 868 87.3 91.8 81.1 77.0 91.4 80.9 - 66 864 800 - (72.8) 83.4 - 77.5 91.1 77.0 88.6 - 62.2 87.7 7.7 - (67.0) 81.2 - 77.1 90.2 77.5 66.7 83 - 612 89 67.4 - (68.3) 80.7 - 68.2 89.3 75.7 64.3 - 67.7 83 - 56.5 56 - 67.7 83.7 78.3 - 56.5 56 - 77.5 76.5 56.5 56.5 57.7 56.5 57.7 56.5	HRC	нν	н	В	HRA	HRB	HRD	HS15N	HS30N	HS45N	HS	-	HRC
67 900 - - 75.4 92.9 83.6 74.2 92.6 87.3 92.6 - 65 64 900 - (73) 87.4 92.2 87.9 72.0 97.4 67.5 63 77.2 - (73) 87.4 92.2 87.9 77.0 88.8 87.7 - 63.5 64 900 - (68) 82.3 - 77.3 97.4 87.4 68.8 87.7 68.8 87.7 68.8 87.7 67.3 97.4 67.7 83.3 77.7 66.3 78.7 66.5 89.3 78.7 66.3 78.7 67.3 78.3 66.7 88.3 78.7 66.3 78.7 67.3 78.3 66.3 78.4 66.3 78.4 66.3 78.4 66.3 78.4 66.3 78.4 66.3 78.4 66.3 78.4 66.3 78.4 66.4 78.4 78.4 66.4 7	68	940	_	_	85.6	_	76.9	93.2	84.4	75.4	97	-	68
e66 e85 - 7.5.4 92.5 82.8 7.3.3 93.4 - - 65 64 800 - (72) 83.4 - 7.3.5 91.8 81.1 71.0 93.8 - 64 63 7.72 - (70) 83.4 - 7.3.5 91.4 80.1 80.9 87.7 83.5 - 612 64 667 4.1 (68) 83.1 - 77.5 96.7 83.5 85.5 80.1 - 612 83.3 75.6 65.7 83.1 - 613 99 67.4 - 65.7 83.3 75.7 64.3 83.1 75.8 77.4 - 65.1 87.3 73.3 97.4 73.5 77.4 70.0 98.5 77.4 70.0 98.5 77.4 70.0 98.5 77.4 70.0 98.5 77.4 70.0 98.5 77.4 70.0 98.5 77.	67	900	-	-	85.0	_	76.1	92.9	83.6	74.2	95	-	67
664 802 - 74.5 92.2 81.9 72.0 91.4 - - 64 64 800 - (72) 83.4 - 73.8 91.4 80.1 87.0 88.8 87.7 - 63 62 77.4 - (68) 82.3 - 73.0 91.4 80.1 73.0 80.8 86.7 83.8 - 63 63 - (67) 81.3 - 77.7 92.2 77.5 66.3 78.7 78.6 65.5 78.0 77.7 63.3 - 57.7 79.0 - 65.6 505 505 - 77.7 0.1 - 66.1 87.4 72.0 69.8 72.0 77.8 - 65.1 87.4 88.9 77.2 63.3 86.7 77.8 - 65.1 87.4 78.0 78.0 78.0 78.0 78.0 78.0 78.0 78.0 78.0	66	865	-	-	84.5	_	75.4	92.5	82.8	73.3	92	-	66
64 80.0 - (705) 82.8 - (73.0) 91.8 81.1 (71.0) 88.2 - (73.0) 91.4 80.1 (79.3) 68.8 65.7 - 62.3 61 77.2 - (6670) 81.8 - (71.5) 90.7 78.4 67.7 81.3 - 69.9 58 667.3 - (654) 80.7 - 66.5 80.7 75.7 66.3 76.8 - 65.7 57 65.3 - 550 75.6 60.8 77.8 68.3 77.8 60.0 77.8 68.3 77.1 90.8 72.2 207.5 55 54 577 - 55.3 76.0 - 66.4 80.43 71.2 58.4 71 1980 55.5 52 544 67.7 48.3 74.7 - 65.4 86.4 71.2 58.4 68.1 68.1 68.1 68.1	65	832	-	(739)	83.9	-	74.5	92.2	81.9	72.0	91	-	65
63 772 - (72) 67 - 73.0 91.4 80.1 69.1 87.7 - 63 61 720 - (670) 81.8 - 77.2 91.1 79.3 68.8 67.4 83 - 610 697 - (634) 81.2 - 70.7 90.2 77.5 66.7 83.3 - 59 58 653 - (654) 81.1 - 66.2 89.3 75.7 64.3 78 - 59 58 655 - 560 77.6 - 66.7 89.3 73.0 60.2 78.3 73.0 60.2 78.3 73.0 60.3 73.5 74 99.4 74 2015 54 53 560 77 - 52.5 77.4 - 66.1 87.4 72.0 98.4 71 98.5 78.5 87.4 99.9 98.2 2115.0	64	800	-	(722)	83.4	_	73.8	91.8	81.1	71.0	88	_	64
662 776 (670) 81.8 77.5 97.7 78.3 68.8 76.7 83 67 60 667 (684) 80.7 69.9 88.8 76.6 65.5 80 69.9 58 6653 613 80.7 68.5 88.9 7.4 64.5 80.7 76.7 64.3 78.9 65.7 56 613 580 75.5 66.9 87.9 73.0 60.9 77.1 98.3 77.1 106.0 63.3 56.0 65.4 86.9 77.2 58.4 77.1 106.6 53 52 544 550 75.4 66.4 86.4 77.2 58.4 77.1 106.6 53 521 528 (47.7) 448 75.9 65.3 88.5 68.5 50.1 66.7 53.3 66.7 108.6 40.9 40.9 40.9 40.9 40.9 40.9	63	772	-	(705)	82.8	-	73.0	91.4	80.1	69.9	87	-	63
61 720 - 670 617 - 713 90.2 77.4 667 81 - 60 59 674 - (664) 617 610 - 690 89.3 77.5 64.3 78.6 655 60 - 682 57 643 - 577 64.3 - 680 88.3 77.3 62.2 7.6 - 58 56 613 - 577 79.0 - 66.7 68.1 88.3 77.3 60.9 7.4 2075 55 54 577 - 58.0 - 66.4 86.3 71.12 58.6 71 1950 65.1 67.4 1850 65.1 68 71.2 58.6 71 78.0 78.0 78.0 78.0 78.0 78.0 78.0 78.0 78.0 78.0 78.0 78.0 78.0 78.0 78.0 78.0 78.0 78.0<	62	746	-	(688)	82.3	-	72.2	91.1	79.3	68.8	85	-	62
b9 e1/2 - 1/1 90/2 7/.3 80 - 60 90 27.3 601 - 60 90 27.3 60 - 63 - 63 - 63 - 53 58 663 - 615 80.1 - 66.2 89.3 71.6 64.3 73.9 60.2 75 - - 55 56 613 - 567 66.3 87.4 72.0 69.8 72 2015 55 54 577 - 543 76.0 - 66.4 86.4 70.2 57.4 69 180 57.1 195 53 55 564 (500) 513 (475) 481 75.9 - 63.1 85.9 69.4 56.1 48 180 51 49 49 49 49 49 49 49 49 49 49 49 49 49 <td>61</td> <td>720</td> <td>-</td> <td>(670)</td> <td>81.8</td> <td>_</td> <td>71.5</td> <td>90.7</td> <td>78.4</td> <td>67.7</td> <td>83</td> <td>_</td> <td>61</td>	61	720	-	(670)	81.8	_	71.5	90.7	78.4	67.7	83	_	61
98 663 - 1037<	60 50	697	-	(654)	81.2	_	70.7	90.2	77.5	66.7 65.5	81	_	60 50
b37 b33 - b96 78.6 - b37 b36 - b36 55 b36 - b36 - b36 77.7 78.0 - b36 77.4 - b36 77.4 - b36 77.4 - b61.1 b37.4 72.0 b38.8 77.2 b201.5 b33 52 544 (600) 512 76.8 - 64.8 86.9 71.2 88.6 77.4 68.1 86.9 71.2 88.6 67.1 68.1 88.9 68.3 68.1 1800 51 53 53 54 64 180 180 64.3 180 64.3 180 64.3 180 64.3 180 64.3 180 64.4 147 174 42 47.1 - 65.4 80.4 </td <td>59</td> <td>653</td> <td>_</td> <td>(034)</td> <td>00.7 80.1</td> <td></td> <td>69.9</td> <td>09.0 80.3</td> <td>76.0</td> <td>64.3</td> <td>78</td> <td></td> <td>58</td>	59	653	_	(034)	00.7 80.1		69.9	09.0 80.3	76.0	64.3	78		58
66 613 - 577 79.0 - 67.7 88.3 73.9 60.20 76 - 66 56 595 - 560 77.4 - 66.9 87.9 72.0 59.3 72 2015 54 53 560 - 552 57.4 60.1 66.1 67.4 72.0 59.3 71 2015 54 52 544 (500) 512 77.6 - 68.4 86.9 70.2 57.4 69.8 180.5 51 63.1 68.1 68.1 68.1 68.1 68.1 68.1 68.1 68.1 68.1 68.1 180.5 44.1 43.1 74.7 - 61.4 64.3 65.2 64.1 63.5 44.1 63.5 44.6 43.2 42.2 73.6 - 57.7 82.0 62.1 47.8 53.0 44.5 44 44.3 490 400 72.0 -<	57	633	_	595	79.6		68.5	88.9	74.8	63.2	76	_	57
65 536 - 560 77.0 73.0 73.0 73.0 73.0 73.0 561 87.4 73.0 593 560 72 2015 541 53 560 - 525 77.4 - 66.1 87.4 72.0 598 72 2015 541 522 544 (500) 512 76.3 - 68.3 85.9 69.4 56.1 68 686 55.0 67 176.0 50 49 494 (444) 499 77.1 - 61.4 84.5 66.7 53.3 66.8 51.4 63.3 66.8 51.4 63.3 66.8 51.4 63.3 66.8 51.4 63.3 66.4 44.4 44.4 44.2 73.1 - 65.0 83.3 64.8 44.0 44.4 44.4 44.3 40.9 47.4 27.5 - 55.5 82.5 63.1 44.5 55.5 134.0	56	613	_	577	79.0	_	67.7	88.3	73.9	62.0	75	_	56
54 577 - 543 774 - 66.1 87.4 72.0 59.8 72.2 2015 54 53 550 544 (500) 512 77.4 - 65.4 68.9 71.2 58.6 71 1950 53 51 528 (487) 486 76.3 - 68.8 85.3 66.4 55.0 67.4 69.8 1889 53 49 498 (464) 490 75.2 - 62.1 85.0 67.6 52.5 64 1055 48 47 471 442 443 73.6 - 60.8 83.9 66.8 14.8 0.8 147.8 1480 445 444 424 421 73.6 - 65.2 82.1 47.8 58 143.2 441 43.8 442 412 390 390 71.5 - 55.2 82.0 62.2 46.7 57.7 138.5	55	595	_	560	78.5	_	66.9	87.9	73.0	60.9	74	2075	55
63 500 525 77.4 65.4 68.9 77.2 58.6 77.1 1950 63 52 544 (600) 512 76.8 64.6 66.4 70.2 57.4 69 1880 52 51 528 (467) 481 75.9 62.1 65.0 67.6 53.8 66 1685 49 48 484 451 455 74.7 - 61.4 84.5 66.7 52.5 64 1685 49 46 453 432 73.6 - 60.0 83.5 64.8 50.3 62 1580 47 44 434 409 409 72.5 - 58.5 82.5 63.1 47.8 58 1433 43 42 412 390 390 71.5 - 56.9 61.5 61.3 45.5 56 13.4 43 43<	54	577	_	543	78.0	_	66.1	87.4	72.0	59.8	72	2015	54
52 544 (500) 512 7.68 $$ 63.8 65.9 69.4 56.1 68.1 68.2 57.4 69.9 1820 57.1 50 513 (475) 481 75.9 $$ 63.1 65.5 68.5 56.0 67.7 176.0 50 48 444 451 455 74.7 $$ 61.4 84.5 66.7 52.5 64.4 1635 48 47 471 442 443 74.1 $$ 60.8 83.9 65.8 51.4 63.3 160.4 45.4 44 449 409 409 72.5 $$ 58.5 82.5 61.3 45.5 56 143.5 44.4 43 40.2 381 381 70.9 $$ 56.2 80.9 60.4 44.3 55 149.4 42.4 40 392 382 362 68.4 70.9 58.6 41.9 </td <td>53</td> <td>560</td> <td>_</td> <td>525</td> <td>77.4</td> <td>_</td> <td>65.4</td> <td>86.9</td> <td>71.2</td> <td>58.6</td> <td>71</td> <td>1950</td> <td>53</td>	53	560	_	525	77.4	_	65.4	86.9	71.2	58.6	71	1950	53
51 528 (487) 446 75.3 63.1 85.9 68.4 56.1 68.5 55.0 67 1760 59 49 498 (464) 469 75.2 62.1 85.0 67.6 53.8 66. 1685 49 48 4484 451 455 74.7 61.4 64.5 66.7 52.5 64.1 68.3 96.8.8 51.4 63 1580 47 46 458 432 73.6 60.0 83.5 64.8 50.3 62.2 63.7 47.8 58 1435 44 43 409 409 72.5 55.5 82.5 63.1 47.8 58.8 143.4 42 412 390 300 71.5 56.9 81.5 61.3 45.5 56.8 134.0 42 44 43.2 43.1 54.4 125.1 140 39 <	52	544	(500)	512	76.8	_	64.6	86.4	70.2	57.4	69	1880	52
60 613 (475) 481 (75) - 62.1 85.0 67.6 53.8 66 1950 49 48 444 451 455 74.7 - 61.4 84.5 66.7 52.5 64 1635 48 47 471 442 443 74.1 - 60.8 83.9 65.8 51.4 63 1580 44 458 432 422 73.6 - 60.0 83.5 64.8 53.3 62 153.0 46 444 409 409 72.5 - 58.5 62.5 63.1 47.8 58 1435 44 43 423 400 400 72.0 - 57.7 82.0 62.2 46.7 51.3 17.8 143 442 41 40.2 381 381 70.9 - 56.2 80.9 60.4 44.3 55.3 17.8 153.3 17.8	51	528	(487)	496	76.3	_	63.8	85.9	69.4	56.1	68	1820	51
49 498 (464) 469 75.2 - 62.1 85.0 67.6 53.8 66 1905 499 47 471 442 443 71.1 - 60.8 83.9 65.8 51.4 63 158.0 47 46 453 446 421 421 73.1 - 58.2 63.1 47.8 58 143.0 60 1400 46 44 434 409 409 72.5 - 58.5 63.1 47.8 58 143.5 43 43 433 400 400 77.5 - 58.6 82.5 63.1 47.8 58 143.0 42 41 402 382 361 37.1 70.4 - 55.4 80.4 58.5 43.1 54 140 32 1160 38 37 383 344 344 68.9 - 53.1 78.8 56.8 <td>50</td> <td>513</td> <td>(475)</td> <td>481</td> <td>75.9</td> <td>-</td> <td>63.1</td> <td>85.5</td> <td>68.5</td> <td>55.0</td> <td>67</td> <td>1760</td> <td>50</td>	50	513	(475)	481	75.9	-	63.1	85.5	68.5	55.0	67	1760	50
48 484 481 455 74,7 - 61,4 84,5 667, 52,5 64,4 1135 448 47 471 442 432 73,6 - 60,0 83,5 64,8 50,3 62 153,0 46 45 444 421 73,1 - 59,2 83,0 64,0 49,0 60 1480 42 43 422 400 400 72,0 - 57,7 82,0 62,2 46,7 57 1385 44 43 422 301 381 70,9 - 56,9 81,5 61,3 45,5 56 1340 42 41 402 381 361 70,9 - 56,4 80,4 50,5 43,1 54 1180 38 322 362 362 69,9 - 53,1 78,8 56,8 31,1 54 441 60 55 34	49	498	(464)	469	75.2	_	62.1	85.0	67.6	53.8	66	1695	49
47 471 442 443 74.1 $ 60.0$ 83.9 68.8 51.4 633 1580 47 466 446 421 73.1 $ 59.2$ 83.0 64.0 49.0 600 1480 45 441 423 400 400 72.0 $ 58.5$ 82.5 62.1 47.8 58 1385 41 422 412 390 390 71.5 $ 56.2$ 80.9 60.4 44.3 55.5 123.5 138.5 138.5 41 402 392 392 371 70.4 $ 55.4$ 80.4 45.5 41.1 120.5 1180 38 372 353 353 354.3 356.3 38.4 49 1115 36.5 38 372 353 36.3 $39.4.6$ 39.5 38.4	48	484	451	455	74.7	_	61.4	84.5	66.7	52.5	64	1635	48
46 458 4452 432 73.6 $ 60.0$ 85.5 64.8 50.3 622 1530 46 44 446 440 409 72.5 $ 58.2$ 82.5 63.1 47.8 58 1435 44 43 422 400 400 72.0 $ 57.7$ 82.0 62.2 46.7 57 1386 442 41 402 380 390 71.5 $ 55.9$ 81.5 61.3 45.5 556 1346 422 41 402 381 381 70.9 $ 56.2$ 80.9 60.4 44.3 55 1295 411 400 322 371 371 70.4 $ 55.4$ 80.4 45.5 41.1 52 1295 411 400 322 362 362 69.9 $ 55.4$ 80.4 45.8 41.3 55 1295 411 37 383 332 363 68.4 (109.0) 52.3 77.8 56.8 41.9 52 1160 37 38 372 336 336 336 68.4 (109.0) 52.3 77.2 55.9 38.4 49 1115 36 37 336 336 331 311 66.8 (107.5) 50.8 77.2 54.2 36.1 47.7 106.5 33.3 34 336 311 311 </td <td>47</td> <td>471</td> <td>442</td> <td>443</td> <td>74.1</td> <td>-</td> <td>60.8</td> <td>83.9</td> <td>65.8</td> <td>51.4</td> <td>63</td> <td>1580</td> <td>47</td>	47	471	442	443	74.1	-	60.8	83.9	65.8	51.4	63	1580	47
4444642142173.1 $-$ 59.283.064.044.06401480454443440040072.0 $-$ 57.782.062.246.7571385444241239039071.5 $-$ 56.981.561.345.5581340424140238138170.9 $-$ 56.280.960.444.3551295414039237.137.170.4 $-$ 55.480.459.543.1541250403938236236269.9 $-$ 53.879.457.740.8511180383736334434468.9 $-$ 53.178.355.938.44911153636433633668.4(109.0)52.377.755.037.2481080353433631931967.4(108.6)50.877.254.236.1441005343332731131166.8(107.5)50.077.650.431.3441000323131029429465.8(106.5)47.775.050.431.342950303433332731131166.3(107.5)50.077.650.431.34295030 <td>46</td> <td>458</td> <td>432</td> <td>432</td> <td>73.6</td> <td>-</td> <td>60.0</td> <td>83.5</td> <td>64.8</td> <td>50.3</td> <td>62</td> <td>1530</td> <td>46</td>	46	458	432	432	73.6	-	60.0	83.5	64.8	50.3	62	1530	46
44 434 409 409 72.5 - 58.5 62.5 62.1 47.8 38 1435 44 43 423 400 400 72.0 - 57.7 82.0 62.2 46.7 57 1385 43 42 412 390 390 71.5 - 56.2 80.9 60.4 44.35 55 1340 42 41 402 381 381 70.9 - 56.4 80.4 59.5 43.1 54 1250 40 39 382 362 362 69.9 - 53.8 79.4 57.7 40.8 51 1180 38 37 363 344 344 68.9 - 53.1 78.8 56.9 38.4 49 1115 36 34 336 327 311 316 67.9 (108.0) 50.8 77.2 54.2 38.1 47 1065	45	446	421	421	73.1	_	59.2	83.0	64.0	49.0	60	1480	45
4.234.234.004.007.2.0 $-$ 5.7.762.062.24.9.75.71.334.34.24.1239039071.5 $-$ 56.981.561.344.35512.95414.039237137170.4 $-$ 55.480.459.543.15412.50403938236236269.9 $-$ 54.679.958.641.9521215393837235338369.4 $-$ 53.879.457.740.8511180383736334434468.9 $-$ 53.178.856.839.6501160373635433633668.4(109.0)52.378.355.938.4491115363332731131166.8(107.5)50.076.653.334.946102.5333332731131166.3(107.0)49.276.152.133.7441000323131029429466.8(106.5)47.775.050.431.334.946102.5333231331029429466.8(106.0)48.475.651.332.543980313030228627127164.3(104.0)46.173.948.6 </td <td>44</td> <td>434</td> <td>409</td> <td>409</td> <td>72.5</td> <td>_</td> <td>58.5</td> <td>82.5</td> <td>63.1</td> <td>47.8</td> <td>58</td> <td>1435</td> <td>44</td>	44	434	409	409	72.5	_	58.5	82.5	63.1	47.8	58	1435	44
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	43	423	400	400	72.0		56.0	02.0 81.5	61.3	40.7	56	1300	43
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	42	412	381	381	70.9	_	56.2	80.9	60.4	43.3	55	1295	41
3936236236269.9 $-$ 54.679.958.641.95212.5393837235335369.4 $-$ 53.879.457.740.8511180383736334434468.9 $-$ 53.878.455.938.44911153636433633666.4(109.0)52.378.355.937.2481080353433631931967.4(108.0)50.877.755.037.2481080353433631931166.8(107.5)50.076.653.334.9461025333231830166.3(107.0)49.276.152.133.7441000323131029429465.8(106.0)48.475.651.332.543980313030228628665.3(105.5)47.775.050.431.342950302929427927964.7(104.5)47.074.549.530.141930292627127164.3(104.0)46.173.946.828.941910282727926426463.3(105.5)47.77.540.888.9272726272255 <td>40</td> <td>392</td> <td>371</td> <td>371</td> <td>70.3</td> <td>_</td> <td>55.4</td> <td>80.4</td> <td>59.5</td> <td>43.1</td> <td>54</td> <td>1250</td> <td>40</td>	40	392	371	371	70.3	_	55.4	80.4	59.5	43.1	54	1250	40
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	39	382	362	362	69.9	_	54.6	79.9	58.6	41.9	52	1215	39
37 363 344 344 68.9 $ 53.1$ 78.8 56.8 39.6 50 1160 37 36 344 336 336 68.4 (109.0) 52.3 77.3 55.9 38.4 49 1115 36 34 336 319 317 67.9 (108.5) 51.5 77.7 55.0 37.2 48 1080 35 34 336 319 319 67.4 (108.5) 51.6 77.2 54.2 36.1 47 1055 34 33 327 311 311 66.8 (107.5) 50.0 76.6 53.3 34.9 46 1025 33 32 318 301 301 66.3 (107.0) 49.2 76.1 51.3 32.5 43 980 31 30 294 294 65.8 (106.0) 48.4 75.6 51.3 32.5 43 980 31 30 302 286 271 271 64.7 (104.5) 47.7 77.5 50.4 31.3 44 950 30.1 29 294 274 264 63.8 (102.5) 44.6 72.8 49.6 28.9 411 910 28 27 279 264 264 63.8 (102.5) 44.6 72.8 46.6 26.7 38 860 26 25 266 253 253 6	38	372	353	353	69.4	_	53.8	79.4	57.7	40.8	51	1180	38
36 354 336 68.4 (109.0) 52.3 78.3 55.9 38.4 49 1115 36 35 345 327 327 67.9 (108.5) 51.5 77.7 55.0 37.2 48 1080 35 34 336 319 37.1 311 66.8 (107.5) 50.0 76.6 53.3 34.9 46 1025 33 32 318 301 301 66.3 (107.0) 49.2 76.1 52.1 33.7 44 1000 32 31 310 294 294 66.8 (106.0) 48.4 75.6 51.3 32.5 43 960 31 30 302 286 266 65.3 (104.5) 47.0 74.5 49.5 30.1 41 930 29 28 266 271 258 268 63.3 (102.5) 44.6 72.8 46.8 26.7	37	363	344	344	68.9	_	53.1	78.8	56.8	39.6	50	1160	37
3534532732767.9(108.5)51.577.755.037.2481080353433631931967.4(108.0)50.877.254.236.14771055343332731131166.8(107.5)50.076.653.334.9461025333231830130166.3(107.0)49.276.152.133.7441000323131029429465.8(106.5)47.775.651.332.543980313030228628665.3(105.5)47.775.050.431.342950302929427927964.7(104.5)47.074.549.530.141910282727926426463.8(103.0)45.273.347.727.840880272627228825863.3(102.5)44.672.846.826.738840252426024724762.4(101.0)43.171.645.024.337825242325424323123161.599.041.670.543.222.035765222426024724762.4(101.0)43.171.645.024.337 <td>36</td> <td>354</td> <td>336</td> <td>336</td> <td>68.4</td> <td>(109.0)</td> <td>52.3</td> <td>78.3</td> <td>55.9</td> <td>38.4</td> <td>49</td> <td>1115</td> <td>36</td>	36	354	336	336	68.4	(109.0)	52.3	78.3	55.9	38.4	49	1115	36
34336319319 67.4 (108.0) 50.8 77.2 54.2 36.1 47 1055 34 33 327 311 311 66.3 (107.5) 50.0 76.6 53.3 34.9 46 1025 33 32 318 301 294 294 66.3 (107.0) 49.2 76.1 52.1 33.7 444 1000 32 31 310 294 294 65.8 (105.5) 47.7 75.0 50.4 31.3 42 950 30 29 294 279 279 64.7 (104.5) 47.0 74.5 49.5 30.1 411 930 29 28 286 271 271 64.3 (104.0) 46.1 73.9 48.6 28.9 411 910 28 27 279 264 264 63.8 (102.5) 44.6 72.8 46.8 26.7 38 860 26 25 266 253 253 62.8 (101.5) 43.8 72.2 46.8 26.7 38 860 25 24 260 247 247 62.4 (101.0) 43.1 71.6 45.0 24.3 37 82.5 24 25 266 253 253 62.8 (101.5) 43.6 77.8 46.8 26.7 38 860 25 24 260 247 247 </td <td>35</td> <td>345</td> <td>327</td> <td>327</td> <td>67.9</td> <td>(108.5)</td> <td>51.5</td> <td>77.7</td> <td>55.0</td> <td>37.2</td> <td>48</td> <td>1080</td> <td>35</td>	35	345	327	327	67.9	(108.5)	51.5	77.7	55.0	37.2	48	1080	35
3332731131166.8(107.5)50.076.653.334.9461025333231830130166.3(107.0)49.276.152.133.7441000323131029429465.8(106.5)47.775.051.332.543980313030228628665.3(105.5)47.775.050.431.342950302929427927964.7(104.5)47.074.549.530.141930292828627127164.3(104.0)46.173.948.628.941910282627225825863.3(102.5)44.672.846.826.738860262526625325362.8(101.5)43.872.245.925.538840252426024724762.4(101.0)43.171.645.024.337825242325424324362.0100.042.171.044.023.136805232224823723761.599.041.670.543.220.735770212023822622660.597.840.169.441.519.63476020<	34	336	319	319	67.4	(108.0)	50.8	77.2	54.2	36.1	47	1055	34
32 318 301 301 66.3 (107.0) 49.2 76.1 52.1 33.7 44 1000 32 31 310 294 294 65.8 (106.0) 48.4 75.6 51.3 32.5 43 980 31 30 302 286 286 65.8 (106.0) 48.4 75.6 51.3 32.5 43 980 31 29 294 279 279 264 264 61.3 (104.0) 46.1 73.9 48.6 28.9 411 910 28 27 279 264 264 63.8 (103.0) 45.2 73.3 47.7 27.8 40 880 27 26 272 258 258 63.3 (102.5) 44.6 72.8 46.8 26.7 38 860 26 25 266 253 253 62.8 (101.5) 43.8 72.2 45.9 25.5 38 840 25 24 260 247 247 62.4 (101.0) 43.1 71.6 45.0 24.3 37 825 24 23 254 243 243 62.0 100.0 42.1 71.0 44.0 23.1 36 805 23 22 248 237 237 61.5 99.0 4.6 74.2 22.0 35 770 21 20 238 226 226 <td>33</td> <td>327</td> <td>311</td> <td>311</td> <td>66.8</td> <td>(107.5)</td> <td>50.0</td> <td>76.6</td> <td>53.3</td> <td>34.9</td> <td>46</td> <td>1025</td> <td>33</td>	33	327	311	311	66.8	(107.5)	50.0	76.6	53.3	34.9	46	1025	33
3131029429465.8(106.0)48.475.651.332.543980313030228628665.3(105.5)47.775.050.431.342950302929427927964.7(104.5)47.074.549.530.141930292828627127164.3(104.0)46.173.948.628.941910282727926426463.8(103.0)45.273.347.727.840880272627225825863.3(102.5)44.672.846.826.738860262426024724762.4(101.0)43.171.645.024.337825242325424324362.0100.042.171.044.023.136805232224823723161.599.041.670.543.222.035785222124323123161.098.540.969.942.320.735770212023826626.597.840.169.441.519.63476020(18)230219219-96.733730(18)(16)2	32	318	301	301	66.3	(107.0)	49.2	76.1	52.1	33.7	44	1000	32
3030/228628665.3(105.5) 47.7 75.0 50.4 31.3 422 950 30 2929427927964.7(104.5) 47.0 74.5 49.5 30.1 41 930 29 28286271271 64.3 (104.0) 46.1 73.9 48.6 28.9 411 910 28 27279264264 63.8 (103.0) 45.2 73.3 47.7 27.8 40 880 27 26272258253 62.8 (101.5) 44.6 72.8 46.8 26.7 38 860 26 25266253253 62.8 (101.5) 43.8 72.2 45.9 25.5 38 840 25 24260247247 62.4 (101.0) 42.1 71.0 44.0 23.1 36 805 23 22248237237 61.5 99.0 41.6 70.5 43.2 22.0 35 785 22 21243231231 61.0 98.5 40.9 69.9 42.3 20.7 35 770 21 20238226226 60.5 97.8 40.1 69.4 41.5 19.6 34 760 20 (18)230219219 $ 95.5$ $ 33$ 730	31	310	294	294	65.8	(106.0)	48.4	75.6	51.3	32.5	43	980	31
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	302	286	286	65.3	(105.5)	47.7	75.0	50.4	31.3	42	950	30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	294	279	279	64.7	(104.5)	47.0	74.5	49.5	28.9	41	930	29
2.1 2.10 2.54 2.58 2.58 2.58 63.3 (102.5) 44.6 72.8 46.8 2.67 38 860 26 25 266 253 253 62.8 (101.5) 43.8 72.2 45.9 25.5 38 840 25 24 260 247 247 62.4 (101.0) 43.1 71.6 45.0 24.3 37 825 24 23 254 243 243 62.0 100.0 42.1 71.0 44.0 23.1 36 805 23 22 248 237 237 61.5 99.0 41.6 70.5 43.2 22.0 35 785 22 21 243 231 231 61.0 98.5 40.9 69.9 42.3 20.7 35 770 21 20 238 226 226 60.5 97.8 40.1 69.4 41.5 19.6 34 760 $2(6)$ (18) 230 219 219 $ 95.5$ $ 33$ 730 (18) (16) 222 212 212 $ 95.5$ $ 33$ 730 (18) (16) 222 212 212 $ 95.5$ $ 33$ 730 (18) (16) 123 203 203 $-$ <td>20</td> <td>279</td> <td>264</td> <td>264</td> <td>63.8</td> <td>(103.0)</td> <td>45.2</td> <td>73.3</td> <td>40.0</td> <td>27.8</td> <td>40</td> <td>880</td> <td>27</td>	20	279	264	264	63.8	(103.0)	45.2	73.3	40.0	27.8	40	880	27
2526625325362.8(101.5)43.872.245.925.538840252426024724762.4(101.0)43.171.645.024.337825242325424324362.0100.042.171.044.023.136805232224823723761.599.041.670.543.222.035785222124323123161.098.540.969.942.320.735770212023822622660.597.840.169.441.519.63476020(18)230219219-96.733730(18)(16)222212212-95.531675(14)(12)204194194-92.328620(10)(10)196187187-90.727600(8)(10)196187187-90.728620(10)(10)196187187-90.727600(8)(14)133165165-85.5-<	26	272	258	258	63.3	(102.5)	44.6	72.8	46.8	26.7	38	860	26
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	25	266	253	253	62.8	(101.5)	43.8	72.2	45.9	25.5	38	840	25
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	260	247	247	62.4	(101.0)	43.1	71.6	45.0	24.3	37	825	24
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	254	243	243	62.0	100.0	42.1	71.0	44.0	23.1	36	805	23
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	248	237	237	61.5	99.0	41.6	70.5	43.2	22.0	35	785	22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	243	231	231	61.0	98.5	40.9	69.9	42.3	20.7	35	770	21
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	20	238	226	226	60.5	97.8	40.1	69.4	41.5	19.6	34	760	20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(18)	230	219	219	_	96.7	-	-	-	_	33	730	(18)
	(16)	222	212	212	-	95.5	-		-	-	32	705	(16)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(14)	213	203	203	-	93.9	-	-	-	-	31	675	(14)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(12)	204	194	194	-	92.3	-	-	-	-	29	650	(12)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(10)	196	187	187	-	90.7	-	-	-	-	28	620	(10)
	(8)	100	171	171		07 1				_	21	590	(8)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		172	165	165		85.5		_			20	550	
(0) 160 152 152 - 81.7 24 515 (0)	(2)	166	158	158	_	83.5					24	530	(2)
	(0)	160	152	152	_	81.7	_	_	_	_	24	515	(0)

**1 : 1Mpa=1N/mm²
 **2 : In above table, numbers in parenthesis are only for reference. This table is abstracted from SAE J 417.

Fechnical formation

30. Conversion table from inch to millimeter

Conversion table from inch to millimeter

Desigi	nation										
Fractional	Decimal	0"	1"	2"	3"	4"	5"	6"	7"	8"	9"
0"	0"	_	25.400	50.800	76.200	101.600	127.000	152.400	177.800	203.200	228.600
Ū	-										
1⁄64 "	0.015625"	0.397	25.797	51.197	76.597	101.997	127.397	152.797	178.197	203.597	228.997
1/32"	0.03125"	0.794	26.194	51.594	76.994	102.394	127.794	153.194	178.594	203.994	229.394
3⁄64"	0.046875"	1.191	26.591	51.991	77.391	102.791	128.191	153.591	178.991	204.391	229.791
V16"	0.0625"	1.588	26.988	52.388	70,104	103.188	128.588	153.988	179.300	204.700	230.100
964	0.078125	1.984	27.384	52.784	/8.184	103.564	120.904	154.364	179.764	203.164	230.364
360"	0.00375"	2 3 8 1	27 781	53 181	78 581	103 981	129 381	154 781	180 181	205 581	230 981
7/64 "	0.09375	2.301	28 178	53 578	78.978	104.378	129 778	155 178	180.578	205.978	231.378
1/6 "	0.125"	3 175	28.575	53.975	79.375	104.775	130,175	155.575	180.975	206.375	231.775
9⁄64"	0.140625"	3.572	28.972	54.372	79.772	105.172	130.572	155.972	181.372	206.772	232.172
5/32"	0.15625"	3.969	29.369	54.769	80.169	105.569	130.969	156.369	181.769	207.169	232.569
11/64"	0.171875"	4.366	29.766	55.166	80.566	105.966	131.366	156.766	182.166	207.566	232.966
3/16"	0.1875"	4.762	30.162	55.562	80.962	106.362	131.762	157.162	182.562	207.962	233.362
¹³ ⁄64"	0.203125"	5.159	30.559	55.959	81.359	105.759	132.159	157.559	102.909	200.359	233.759
15Z . II	0.218/5"	5.556	30.950	56.350	81.700	107.150	132.000	157.900	183 753	208.750	234.150
-964	0.234375	5.955	31.333	50.755	02.155	107.555	102.900	100.000	100.700	200.100	204.000
1⁄4 "	0.25"	6.350	31.750	57.150	82.550	107.950	133.350	158.750	184.150	209.550	234.950
17/64"	0.265625"	6.747	32.147	57.547	82.947	108.347	133.747	159.147	184.547	209.947	235.347
⁹ /32"	0.28125"	7.144	32.544	57.944	83.344	108.744	134.144	159.544	184.944	210.344	235.744
19/64 "	0.296875"	7.541	32.941	58.341	83.741	109.141	134.541	159.941	185.341	210.741	236.141
5/16"	0.3125"	7.938	33.338	58.738	84.138	109.538	134.938	160.338	185.738	211.138	236.538
										044 504	000.004
21/64	0.328125"	8.334	33.734	59.134	84.534	109.934	135.334	160.734	186.134	211.534	236.934
1/32"	0.34375"	8.731	34.131	59.531	84.931	110.331	135.731	161.131	186.531	211.931	237.331
2%64" 37.11	0.359375"	9.128	34.528	59.928	85.328	111.128	130.128	161.026	100.920	212.320	237.720
25Z . II	0.375	9.525	34.925	60.325	86 122	111.120	136.020	162 322	187 722	212.723	238 522
-764	0.390023	9.922	00.022	00.722	00.122	111.522	100.522	102.022	TOTITEE	210.122	LUUIULL
13/32"	0.40625"	10.319	35.719	61.119	86.519	111.919	137.319	162.719	188.119	213.519	238.919
27/64 "	0.421875"	10.716	36.116	61.516	86.916	112.316	137.716	163.116	188.516	213.916	239.316
7⁄16"	0.4375"	11.112	36.512	61.912	87.312	112.712	138.112	163.512	188.912	214.312	239.712
29/64 "	0.453125"	11.509	36.909	62.309	87.709	113.109	138.509	163.909	189.309	214.709	240.109
15/32"	0.46875"	11.906	37.306	62.706	88.106	113.506	138.906	164.306	189.706	215.106	240.506
01.6	0.404075	10.000	07 700	00.400	00 500	110.000	100.000	104 700	100 100	015 500	040.000
31/64"	0.484375"	12.303	37.703	63.103	88.503	113.903	139.303	164.703	190.103	215.503	240.903
1/2 " 33/ II	0.5	12.700	38.100	63.500	80.900	114.300	140.007	165.100	190.300	215.900	241.500
176.	0.515025	13.097	38 80/	64 294	89.69/	115.09/	140.097	165 894	191 294	216.694	242.094
35/64 "	0.546875"	13 891	39 291	64.691	90.091	115.491	140.891	166.291	191.691	217.091	242.491
	0.010010	10.001	001201	0 1100 1							
9⁄16"	0.5625"	14.288	39.688	65.088	90.488	115.888	141.288	166.688	192.088	217.488	242.888
37/64 "	0.578125"	14.684	40.084	65.484	90.884	116.284	141.684	167.084	192.484	217.884	243.284
19/32"	0.59375"	15.081	40.481	65.881	91.281	116.681	142.081	167.481	192.881	218.281	243.681
³⁹ ⁄64 "	0.609375"	15.478	40.878	66.278	91.678	117.078	142.478	167.878	193.278	218.678	244.078
5⁄8"	0.625"	15.875	41.275	66.675	92.075	117.475	142.875	168.275	193.675	219.075	244.475
412.1	0.640625"	16.070	41 672	67.072	02 172	117 872	1/13 272	168 672	194 072	219 472	244 872
2160"	0.040025	16.669	41.072	67.469	92.472	118 269	143 669	169.069	194 469	219.869	245 269
43/64 "	0.671875"	17.066	42.005	67 866	93 266	118 666	144.066	169.466	194.866	220.266	245.666
11/16"	0.6875"	17.462	42.862	68.262	93.662	119.062	144.462	169.862	195.262	220.662	246.062
45/64 "	0.703125"	17.859	43.259	68.659	94.059	119.459	144.859	170.259	195.659	221.059	246.459
²³ / ₃₂ "	0.71875"	18.256	43.656	69.056	94.456	119.856	145.256	170.656	196.056	221.456	246.856
47/64 "	0.734375"	18.653	44.053	69.453	94.853	120.253	145.653	171.053	196.453	221.853	247.253
3⁄4"	0.75"	19.050	44.450	69.850	95.250	120.650	146.050	171.450	196.850	222.250	247.650
49/64 "	0.765625"	19.447	44.847	70.247	95.647	121.047	146.447	170.047	197.247	222.047	240.047
2-932	0.78125	19.844	45.244	70.644	96.044	121.444	140.044	172.244	197.044	223.044	240.444
51/64 "	0.796875"	20.241	45.641	71.041	96.441	121.841	147.241	172.641	198.041	223.441	248.841
13/16"	0.8125"	20.638	46.038	71.438	96.838	122.238	147.638	173.038	198.438	223.838	249.238
53/64 "	0.828125"	21.034	46.434	71.834	97.234	122.634	148.034	173.434	198.834	224.234	249.634
27/32"	0.84375"	21.431	46.831	72.231	97.631	123.031	148.431	173.831	199.231	224.631	250.031
55/64 "	0.859375"	21.828	47.228	72.628	98.028	123.428	148.828	174.228	199.628	225.028	250.428
7/ 11	0.075"	00.005	47.005	70.005	00.405	100.005	140.005	174 005	200 025	225 405	250 025
1/8" 577 II	0.875"	22.225	47.625	73.025	98.425	123.825	149.225	175.000	200.025	220.420	200.825
294"	0.090025	22.022	40.022	72 210	90.022	124.222	149.022	175 410	200.422	220.022	251 610
-732 59/64 "	0.901875"	23.019	48 816	74 216	99.616	125.016	150.416	175,816	201,216	226,616	252,016
15/16"	0.9375"	23.812	49.212	74.612	100.012	125.412	150.812	176.212	201.612	227.012	252.412
61/64 "	0.953125"	24.209	49.609	75.009	100.409	125.809	151.209	176.609	202.009	227.409	252.809
³¹ / ₃₂ "	0.96875"	24.606	50.006	75.406	100.806	126.206	151.606	177.006	202.406	227.806	253.206
⁶³ ⁄ ₆₄ "	0.984375"	25.003	50.403	75.803	101.203	126.603	152.003	177.403	202.803	228.203	253.603

6 Think threads with **YAMAWA**

31 Chemical Component table of work materials

The n	ame of work mat	erials				Chemical Con	nposition (%)			
an	d material Symbo	DIS	C	Si	Mn	Р	S	Ni	Cr	Мо
Carbon steels	Low carbon	S10C	0.08~0.13	0.15~0.35	0.30~0.60	0.030≧	0.035≧	-	_	—
structural use		S15C	0.13~0.18	0.15~0.35	0.30~0.60	0.030≧	0.035≧	_	-	_
		S20C	0.18~0.23	0.15~0.35	0.30~0.60	0.030≧	0.035≧	_	_	_
	Medium	S25C	0.22~0.28	0.15~0.35	0.30~0.60	0.030≧	0.035≧	-	_	_
		S35C	0.32~0.38	0.15~0.35	0.60~0.90	0.030≧	0.035≧	_	_	_
		S45C	0.42~0.48	0.15~0.35	0.60~0.90	0.030≧	0.035≧	_	_	_
	High carbon steels	S48C	0.45~0.51	0.15~0.35	0.60~0.90	0.030≧	0.035≧	_	_	_
		S55C	0.52~0.58	0.15~0.35	0.60~0.90	0.030≧	0.035≧	-	_	_
		S58C	0.55~0.61	0.15~0.35	0.60~0.90	0.030≧	0.035≧	_	_	_
Alloy steels for machine	Chromium Molybdenum	SCM415	0.13~0.18	0.15~0.35	0.60~0.90	0.030≧	0.030≧	0.25≧	0.90~1.20	0.15~0.25
structural use	Steels	SCM418	0.16~0.21	0.15~0.35	0.60~0.90	0.030≧	0.030≧	0.25≧	0.90~1.20	0.15~0.25
		SCM420	0.18~0.23	0.15~0.35	0.60~0.90	0.030≧	0.030≧	0.25≧	0.90~1.20	0.15~0.25
		SCM430	0.28~0.33	0.15~0.35	0.60~0.90	0.030≧	0.030≧	0.25≧	0.90~1.20	0.15~0.30
		SCM435	0.33~0.38	0.15~0.35	0.60~0.90	0.030≧	0.030≧	0.25≧	0.90~1.20	0.15~0.30
		SCM440	0.38~0.43	0.15~0.35	0.60~0.90	0.030≧	0.030≧	0.25≧	0.90~1.20	0.15~0.30
		SCM445	0.43~0.48	0.15~0.35	0.60~0.90	0.030≧	0.030≧	0.25≧	0.90~1.20	0.15~0.30
	Nickel	SNC236	0.32~0.40	0.15~0.35	0.50~0.90	0.030≧	0.030≧	1.00~1.50	0.50~0.90	_
	Steels	SNC415	0.12~0.18	0.15~0.35	0.35~0.65	0.030≧	0.030≧	2.00~2.50	0.20~0.50	_
		SNC631	0.27~0.35	0.15~0.35	0.35~0.65	0.030≧	0.030≧	2.50~3.00	0.60~1.00	_
		SNC815	0.12~0.18	0.15~0.35	0.35~0.65	0.030≧	0.030≧	3.00~3.50	0.60~1.00	_
	Chromium Steels	SCr415	0.13~0.18	0.15~0.35	0.60~0.90	0.030≧	0.030≧	0.25≧	0.90~1.20	_
		SCr420	0.18~0.23	0.15~0.35	0.60~0.90	0.030≧	0.030≧	0.25≧	0.90~1.20	_
		SCr430	0.28~0.33	0.15~0.35	0.60~0.90	0.030≧	0.030≧	0.25≧	0.90~1.20	_
		SCr440	0.38~0.43	0.15~0.35	0.60~0.90	0.030≧	0.030≧	0.25≧	0.90~1.20	_
	Nickel Chromium Molybdenum Steels	SNCM220	0.17~0.23	0.15~0.35	0.60~0.90	0.030≧	0.030≧	0.40~0.70	0.40~0.60	0.15~0.25
		SNCM240	0.38~0.43	0.15~0.35	0.70~1.00	0.030≧	0.030≧	0.40~0.70	0.40~0.60	0.15~0.30
		SNCM420	0.17~0.23	0.15~0.35	0.40~0.70	0.030≧	0.030≧	1.60~2.00	0.40~0.60	0.15~0.30
		SNCM439	0.36~0.43	0.15~0.35	0.60~0.90	0.030≧	0.030≧	1.60~2.00	0.60~1.00	0.15~0.30

Technical Information

	Cherr	nical Compositi	on (%)			Mechanical Propert	y of Standard test block
W	V	Ph	Cu	others	Tensile strength (N/mm ²)	Hardness	Heat treatment of standard test block
_	-	_	-	_	314≦	109~156 HB	900∼950℃ normalizing
_	_	_	_	_	373≦	111~167 HB	880~930°C normalizing
_	_	_	-	_	402≦	116~174 HB	870~920°C normalizing
_	_	_	-	_	441≦	123~183 HB	860~910°C normalizing
					510≦	149~207 HB	840~890°C normalizing
_	—	—	-	-	569≦	167~235 HB	840~890°C water hardening • 550~650°C air hardening
					569≦	167~229 HB	820~870°C normalizing
_	—	_	_	_	686≦	201~269 HB	820~870°C water hardening · 550~650°C air hardening
					608≦	179~235 HB	810~860°C normalizing
_	_	_	_	_	735≦	212~277 HB	810~860°C water hardening · 550~650°C air hardening
					647≦	183~255 HB	800~850°C normalizing
_	_	_	_	_	785≦	229~285 HB	800~850°C water hardening · 550~650°C air hardening
					647≦	183~255 HB	800~850°C normalizing
_	_	_	_	_	785≦	229~285 HB	800~850°C water hardening · 550~650°C air hardening
	_	_	_	_	834≦	235~321 HB	
_	_	_	_	_	883≦	248~331 HB	800~850°C Oil hardening
_	_	_	_	_	932≦	262~352 HB	150~200°C tempering
_	_	_	_	_	834≦	241~302 HB	
_	_		_	_	932≦	269~331 HB	830∼880°C Oil bardening • 530∼630°C air bardening
_	_	_	_	_	980.7≦	285~352 HB	150~200°C tempering
	_	_	_	_	1030≦	302~363 HB	
_	_	_	_	_	736≦	217~277 HB	820~880°C Oil hardening · 550~650°C air hardening
							850~900°C Oil hardening
_	—	—	-	-	785≦	235~341 HB	740~790°C Water hardening
_	_	_	_	_	834≦	248~302 HB	820~880°C Oil hardening • 550~650°C air hardening
							830~880°C Oil hardening
_	_	_	_	_	980.7≦	285~388 HB	750∼800°C Oil hardening
	_	_	_	_	785≦	217~302 HB	850~900°C Oil hardening
	_	_	_	_	834≦	235~321 HB	800~850°C Oil hardening
_	_	_	_	_	785≦	229~293 HB	$830 \sim 880^{\circ}$ C Oil bardening : $520 \sim 620^{\circ}$ C air bardening
	_	_	_	_	932≦	269~331 HB	150~200°C tempering
							850~900°C Oil hardening
_	_	_	-	-	834≦	248~341 HB	800~850°C Oil hardening
_	_	_	_	_	883≦	255~311 HB	820~870°C Oil hardening • 580~680°C air hardening
	<u> </u>						850~900°C Oil hardening
-	_	_	-	-	980.7≦	293~375 HB	770∼820°C Oil hardening
_	_	_	_	_	980.7≦	293~352 HB	820~870°C Oil hardening • 580~680°C air hardening

Technical-70 719

The	name of work ma	terials	Chemical Composition (%)								
aı	nd material Symb	ools	C	Si	Mn	Р	s	Ni	Cr	Мо	
Alloy steels	Nickel	SNCM625	0.20~0.30	0.15~0.35	0.35~0.60	0.030≧	0.030≧	3.00~ 3.50	1.00~ 1.50	0.15~0.30	
for machine structural use	Chromium Molybdenum	SNCM630	0.25~0.35	0.15~0.35	0.35~0.60	0.030≧	0.030≧	2.50~ 3.50	2.50~ 3.50	0.50~0.70	
	Steels	SNCM815	0.12~0.18	0.15~0.35	0.30~0.60	0.030≧	0.030≧	4.00~ 4.50	0.70~ 1.00	0.15~0.30	
Tool steels	Chromium Tool steels	SK2	1.15~1.25	0.10~0.35	0.10~0.50	0.030≧	0.030≧	_	_	_	
	Toorsteels	SK4	0.90~1.00	0.10~0.35	0.10~0.50	0.030≧	0.030≧	_	_	_	
		SK6	0.70~0.80	0.10~0.35	0.10~0.50	0.030≧	0.030≧	_	-	_	
	Alloys Tool	SKS11	1.20~1.30	0.35≧	0.50≧	0.030≧	0.030≧	_	0.20~ 0.50	-	
	310013	SKS51	0.75~0.85	0.35≧	0.50≧	0.030≧	0.030≧	1.30~ 2.00	0.20~ 0.50	_	
	SKS4	0.45~0.55	0.35≧	0.50≧	0.030≧	0.030≧	-	0.50~ 1.00	-		
		SKS3	0.90~1.00	0.35≧	0.90~1.20	0.030≧	0.030≧	-	0.50~ 1.00	_	
		SKS94	0.90~1.00	0.50≧	0.80~1.10	0.030≧	0.030≧	-	0.20~ 0.60	_	
		SKD11	1.40~1.60	0.40≧	0.60≧	0.030≧	0.030≧	-	11.00~13.00	0.80~1.20	
		SKD61	0.35~0.42	0.80~1.20	0.25~0.50	0.030≧	0.020≧	-	4.80~ 5.50	1.00~1.50	
		SKT3	0.50~0.60	0.35≧	0.60~1.00	0.030≧	0.020≧	0.25~ 0.60	0.90~ 1.20	0.30~0.50	
		SKT4	0.50~0.60	0.10~0.40	0.60~0.90	0.030≧	0.020≧	1.50~ 1.80	0.80~ 1.20	0.35~0.55	
Stainless steels	Stainless Austenite type steels	SUS301	0.15≧	1.00≧	2.00≧	0.045≧	0.030≧	6.00~ 8.00	16.00~18.00	-	
Steels		SUS303	0.15≧	1.00≧	2.00≧	0.20≧	0.15≦	8.00~10.00	17.00~19.00	-	
		SUS304	0.08≧	1.00≧	2.00≧	0.045≧	0.030≧	8.00~10.50	18.00~20.00	-	
		SUS316	0.08≧	1.00≧	2.00≧	0.045≧	0.030≧	10.00~14.00	16.00~18.00	2.00~3.00	
	Martensite type	SUS403	0.15≧	0.50≧	1.00≧	0.040≧	0.030≧	-	11.50~13.00	-	
		SUS416	0.15≧	1.00≧	1.25≧	0.060≧	0.15≦	-	12.00~14.00	-	
		SUS420J2	0.26~0.40	1.00≧	1.00≧	0.040≧	0.030≧	-	12.00~14.00	-	
		SUS440C	0.95~1.20	1.00≧	1.00≧	0.040≧	0.030≧	-	16.00~18.00	-	
	Ferrite type	SUS430	0.12≧	0.75≧	1.00≧	0.040≧	0.030≧	-	16.00~18.00	_	
	Precipitation hardening	SUS630	0.07≧	1.00≧	1.00≧	0.040≧	0.030≧	3.00~ 5.00	15.00~17.50	_	
Cast steels	Carbon steels Cast steels	SC360	0.20≧	_	_	0.040≧	0.040≧	_	_	_	
		SC410	0.30≧	_	_	0.040≧	0.040≧	_	_	_	
		SC450	0.35≧	_	_	0.040≧	0.040≧	_	-	_	
		SC480	0.40≧	_	_	0.040≧	0.040≧	_	-	_	
	Stainless steels casting	SCS13	0.08≧	2.00≧	2.00≧	0.040≧	0.040≧	8.00~11.00	18.00~21.00	_	
		SCS14	0.08≧	2.00≧	2.00≧	0.040≧	0.040≧	10.00~14.00	17.00~20.00	2.00~3.00	
	Steel casting for high	SCPH1	0.25≧	0.60≧	0.70≧	0.040≧	0.040≧	_	_	_	
	temperature and high	SCPH2	0.30≧	0.60≧	1.00≧	0.040≧	0.040≧	_	_	_	
	pressure	SCPH21	0.20≧	0.60≧	0.50~0.80	0.040≧	0.040≧	_	1.00~ 1.50	0.45~0.65	
		SCPH32	0.20≧	0.60≧	0.50~0.80	0.040≧	0.040≧		2.00~ 2.75	0.90~1.20	
	Steel casting for welded structure	SCW480	0.22≧	0.80≧	1.50≧	0.040≧	0.040≧	0.50≧	0.50≧	_	

Technical Information

Vertical Sector Product of the sector Product of the sector Product of the sector Product of the sector 1 1 1 1 1 1 1 239-321 H3 239-07C of the sector 239-07C of the s		Chem	nical Compositi	on (%)		Mechanical Property of Standard test block			
Image: state in the state in	\W	V	Ph	Cu	others	Tensile strength (N/mm ²)	Hardness	Heat treatment of standard test block	
10785302-321M809-300 contactor, 50-400 Car hardening 339-380 C D Hardening 189-300 C D Hardening 189-300 C D Hardening 	_	_	_	_	_	932≦	269~321 HB	820∼870°C oil hardening · 570∼670°C air hardening	
Image: state in the state interval of the state interval in	_	_	_	_	_	1079≦	302~352 HB	850~950°C normalizing • 550~650°C air hardening	
780-780C anealing1-1-1-1-1-1-100100-780C anealing3.00-4.00100-0301-1-1-1001184780-80C anealing3.00-4.00100-0301-1-1-1001184780-80C anealing3.00-4.001-1-1-1-1001184780-80C anealing3.00-4.001-1-1-1-1001184780-80C anealing3.00-4.001-1-1-1001184780-80C anealing3.00-4.001-1-1-1001184780-80C anealing3.00-4.001-1-1-121184740-780C anealing3.00-4.001-1-1-121184740-780C anealing3.00-4.001-1-1-121184740-80C anealing3.00-4.001-1-1-121184740-80C anealing3.00-4.001-1-1-121184740-80C anealing3.00-4.001-1-1-121184740-80C anealing3.00-4.001-1-1-121184740-80C anealing3.00-5.001-1-1-121184740-80C anealing3.00-5.001-1-1-121184740-80C anealing3.00-5.001-1-1-121184740-80C anealing3.00-5.001-1-1-121184740-80C anealing3.00-5.001-1-1201191740-80C a	_	_	_	_	_	1079≦	311~375 HB	830~880°C Oil hardening 750~800°C Oil hardening 150~200°C tempering	
1—1—1—1—1—100-700 annealing1—1—1—1—1—201HB470-7600 annealing300-40010-0001—1—1—201HB470-8600 annealing300-4001—1—1—21HB470-8600 annealing1—1—1—1—207HB470-8600 annealing0.50-1001—1—1—207HB470-8600 annealing0.50-1001—1—1—207HB470-8600 annealing0.50-1001—1—1—207HB470-8600 annealing0.50-1001—1—1—207HB470-8600 annealing0.50-1001—1—1—207HB470-8600 annealing0.50-1001—1—1—207HB470-8600 annealing1.501—1—1—207HB470-8600 annealing1.501—1—1—212HB470-8600 annealing1.50200-051—1—225HB470-8600 annealing1.501—1—11111.501—11111.501—111111.501—111111.501—111111.501—111111.501—111111.501—11111	_	_	_	_	_	_	212 HB ≦	750∼780°C annealing	
Image: symbol	_	-	_	_	_	_	207 HB ≦	740~760°C annealing	
3.00~4.000.10~0.01I—II—II—IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	_	-	-	-	-	—	201 HB ≦	730∼760℃ annealing	
207 HB ≤75~800 annealing050-100201 HB ≤74~780 annealing050-100217 HB ≤75~800 annealing0217 HB ≤75~800 annealing217 HB ≤75~800 annealing7575~800 annealing7575176176176176176176176167176176176176	3.00~4.00	0.10~0.30	_	_	-	_	241 HB ≦	780∼850℃ annealing	
0.60~1.00201 H&A740~780C annealing0.60~1.00217 H&A750~800C annealing212 H&A740~760C annealing0.20~050225 H&A830~880C annealing0.80~115229 H&A820~870C annealing0.80~115229 H&A820~870C annealing0.80~115229 H&A820~870C annealing0.80~115229 H&A820~870C annealing0.80~115229 H&A820~870C annealing0.80~105229 H&A760~800C annealing0.700.700.701.7052054187 H&A740~800C annealing52054187 H&A740~800C annealing52054187 H&A740~4800C annealing52054187 H&A740~4800C annealing52054187 H&A740~4800C annealing52054187 H&A740~4800C annealing	-	-	-	-	-	_	207 HB ≦	750∼800℃ annealing	
0.50~1001 <t< td=""><td>0.50~1.00</td><td>-</td><td>-</td><td>-</td><td>-</td><td>_</td><td>201 HB ≦</td><td>740∼780℃ annealing</td></t<>	0.50~1.00	-	-	-	-	_	201 HB ≦	740∼780℃ annealing	
212 HB ≤740-760° cannealing0.20-0.05255 HB ≤830-880° cannealing0.80-115229 HB ≤820-870° cannealing229 HB ≤820-870° cannealing0.05~0.15225 HB ≤760-810° cannealing0.05~0.15221 HB ≤70-800° cannealing0.05~0.15221 HB ≤740-800° cannealing0.05~0.15221 HB ≤70-800° cannealing221 HB ≤70-800° cannealing221 HB ≤70-800° cannealing162 HB ≤70-1150° colution treatment520 ≤187 HB ≤70-1150° colution treatment520 ≤187 HB ≤70-900° cannealing200 HB ≤800~900° cannealing200 HB ≤800~900° cannealing200 HB ≤800~900° cannealing200 HB ≤800~900° cannealing363 HB ≤1020~1160° clution treatment	0.50~1.00	-	_	-	-	_	217 HB ≦	750∼800℃ annealing	
0.20~0.00255 HB ≤830~880° annealing0.80~1.15229 HB ≤820~870° annealing235 HB ≤760~810° annealing0.05~0.15241 HB ≤740~800° annealing241 HB ≤740~800° annealing100~1150° colution treatment520 ≤187 HB ≤520 ≤187 HB ≤100~1150° colution treatment200 HB ≤800~90°C annealing235 HB ≤780~850°C normalizing363 HB ≤780~850°C normalizing,363 HB ≤1020~1060°C solution treatment363 HB ≤ <td>_</td> <td>-</td> <td>-</td> <td>_</td> <td>-</td> <td>_</td> <td>212 HB ≦</td> <td>740∼760℃ annealing</td>	_	-	-	_	-	_	212 HB ≦	740∼760℃ annealing	
0.80~1.15229 HB ≤820~870° annealing235 HB ≤760~810° annealing0.05~0.15241 HB ≤740~800° annealing520 ≤1187 HB ≤520 ≤1187 HB ≤740~80° annealing520 ≤1187 HB ≤200 HB ≤760~80° annealing200 HB ≤760~80° Conmalizing283 HB ≤760~80° Conmalizing, or malizing,	_	0.20~0.50	_	_	-	_	255 HB ≦	830∼880℃ annealing	
235 HB760~810° annealing0.05~0.15241 HB740~800° annealing520 5187 HB520 5187 HB200 HB200 HB80~900° cannealing235 HB80~900° cannealing236 HB80~90° cannealing269 HB80~90° cannealing363 HS102~160° cannealing363 HS363 HS	_	0.80~1.15	_	-	-	_	229 HB ≦	820~870°C annealing	
$ \begin{array}{ c c c c c } \hline - & 0.05 & 0.15 & - & - & - & - & - & - & - & 241 \text{HB} \leq & 740 ~ 800 ° C \text{annealing} \\ \hline - & - & - & - & - & - & 520 \leq & 187 \text{HB} \leq & \\ \hline - & - & - & - & - & - & 520 \leq & 187 \text{HB} \leq & \\ \hline - & - & - & - & - & - & 520 \leq & 187 \text{HB} \leq & \\ \hline - & - & - & - & - & - & 520 \leq & 187 \text{HB} \leq & \\ \hline - & - & - & - & - & - & 520 \leq & 187 \text{HB} \leq & \\ \hline - & - & - & - & - & - & 520 \leq & 187 \text{HB} \leq & \\ \hline - & - & - & - & - & - & 520 \leq & 187 \text{HB} \leq & \\ \hline - & - & - & - & - & - & - & 200 \text{HB} \leq & \\ \hline - & - & - & - & - & - & - & 200 \text{HB} \leq & \\ \hline - & - & - & - & - & - & - & 200 \text{HB} \leq & \\ \hline - & - & - & - & - & - & 200 \text{HB} \leq & \\ \hline - & - & - & - & - & - & 200 \text{HB} \leq & 800 ~ 900 ° C \text{annealing} & \\ \hline - & - & - & - & - & - & 255 \text{HB} \leq & \\ \hline - & - & - & - & - & - & - & 269 \text{HB} \leq & 800 ~ 900 ° C \text{annealing} & \\ \hline - & - & - & - & - & - & 451 \leq & 183 \text{HB} \leq & 1020 ~ 1060 ° C \text{solution treatment} & \\ \hline - & - & - & - & - & - & 363 ~ - & \\ \hline - & - & - & - & - & - & 363 ~ - & \\ \hline - & - & - & - & - & - & 441 \simeq & - & \\ \hline - & - & - & - & - & - & 441 \leq & - & \\ \hline - & - & - & - & - & - & 441 \leq & - & \\ \hline - & - & - & - & - & - & 441 \leq & - & \\ \hline - & - & - & - & - & - & 441 \leq & - & \\ \hline - & - & - & - & - & - & 441 \leq & - & \\ \hline - & - & - & - & - & - & 441 \leq & - & \\ \hline - & - & - & - & - & - & - & 441 \leq & - & \\ \hline - & - & - & - & - & - & - & - & 441 \leq & - & \\ \hline - & - & - & - & - & - & - & - & 441 \leq & - & - \\ \hline - & - & - & - & - & - & - & - & - & -$	_	-	-	-	-	_	235 HB ≦	760∼810℃ annealing	
520≦187 HB≤520≦187 HB≤520≦187 HB≤520≦187 HB≤520≦187 HB≤520≦187 HB≤520≦187 HB≤200 HB≤200 HB≤200 HB≤225 HB≤269 HB≤269 HB≤363 HS363 HS363 HS <td< td=""><td>_</td><td>0.05~0.15</td><td>_</td><td>_</td><td>-</td><td>_</td><td>241 HB ≦</td><td>740∼800℃ annealing</td></td<>	_	0.05~0.15	_	_	-	_	241 HB ≦	740∼800℃ annealing	
$ 520 \le$ $187 \ HB \le$ $ 200 \ HB \le$ $800 \sim 900^{\circ}$ annealing $ 200 \ HB \le$ $800 \sim 920^{\circ}$ annealing $ 200 \ HB \le$ $800 \sim 920^{\circ}$ annealing $ 269 \ HB \le$ $800 \sim 920^{\circ}$ annealing $ 269 \ HB \le$ $800 \sim 920^{\circ}$ connealing $ 363 \ HB \le$ $1020 \sim 1060^{\circ}$ colution treatment $ -$ <td>_</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>520≦</td> <td>187 HB ≦</td> <td></td>	_	-	-	-	-	520≦	187 HB ≦		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	_	-	_	-	-	520≦	187 HB ≦		
520 ≤187 HB ≤200 HB ≤200 HB ≤200 HB ≤200 HB ≤800~900°C annealing235 HB ≤800~920°C annealing269 HB ≤800~920°C annealing269 HB ≤800~920°C annealing269 HB ≤800~920°C annealing269 HB ≤800~920°C annealing451 ≤183 HB ≤780~850°C normalizing363 S363 S363 S<	_	-	_	_	-	520≦	187 HB ≦	1010~1150 C solution treatment	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	_	_	_	_	_	520≦	187 HB ≦		
$ 200 \text{ HB} \leq$ $800 \sim 900^\circ C$ annealing $ 235 \text{ HB} \leq$ $235 \text{ HB} \leq$ $800 \sim 920^\circ C$ annealing $ 235 \text{ HB} \leq$ $800 \sim 920^\circ C$ annealing $ 269 \text{ HB} \leq$ $800 \sim 920^\circ C$ annealing $ 269 \text{ HB} \leq$ $800 \sim 920^\circ C$ annealing $ 269 \text{ HB} \leq$ $800 \sim 920^\circ C$ annealing $ 269 \text{ HB} \leq$ $800 \sim 920^\circ C$ annealing $ 451 \leq$ $183 \text{ HB} \leq$ $1020 \sim 1060^\circ C$ solution treatment $ 363 \leq$ $ -$ <td>_</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>_</td> <td>200 HB ≦</td> <td></td>	_	-	-	-	-	_	200 HB ≦		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	_	-	_	_	-	_	200 HB ≦	800∼900℃ annealing	
$ \begin{array}{ c c c c c c c } \hline - & - & - & - & - & - & - & - & - & -$	_	-	_	_	-	_	235 HB ≦		
$ \begin{array}{ c c c c c c c } \hline - & - & - & - & - & - & - & - & - & -$	_	-	_	_	-	_	269 HB ≦	800∼920℃ annealing	
$ \begin{array}{ c c c c c c } \hline - & - & - & 3.00 \\ \hline - & - & - & - & - & 363 \\ \hline - & - & - & - & - & 363 \\ \hline - & - & - & - & - & 363 \\ \hline - & - & - & - & - & - & 412 \\ \hline - & - & - & - & - & - & 412 \\ \hline - & - & - & - & - & - & 451 \\ \hline - & - & - & - & - & - & 451 \\ \hline - & - & - & - & - & - & 481 \\ \hline - & - & - & - & - & - & 481 \\ \hline - & - & - & - & - & - & 440 \\ \hline - & - & - & - & - & - & 440 \\ \hline - & - & - & - & - & - & 440 \\ \hline - & - & - & - & - & - & - & 440 \\ \hline - & - & - & - & - & - & - & 480 \\ \hline - & - & - & - & - & - & - & 480 \\ \hline - & - & - & - & - & - & - & 480 \\ \hline - & - & - & - & - & - & - & 480 \\ \hline - & - & - & - & - & - & - & 480 \\ \hline - & - & - & - & - & - & - & 480 \\ \hline - & - & - & - & - & - & - & 480 \\ \hline - & - & - & - & - & - & - & 480 \\ \hline - & - & - & - & - & - & - & 480 \\ \hline - & - & - & - & - & - & - & 480 \\ \hline - & - & - & - & - & - & - & - & 480 \\ \hline - & - & - & - & - & - & - & - & 480 \\ \hline - & - & - & - & - & - & - & - & - & 480 \\ \hline - & - & - & - & - & - & - & - & - & -$	_	-	-	-	-	451≦	183 HB ≦	780∼850℃ normalizing	
$ \begin{array}{ c c c c c c } \hline - & & & & & & & & & & & & & & & & & &$	_	-	-	3.00~5.00	Nb0.15~0.45	_	363 HB ≦	1020~1060°C solution treatment	
	_	-	-	-	-	363≦	-		
$ \begin{array}{ c c c c c c } \hline - & & & & & & & & & & & & & & & & & &$	-	-	_	_	-	412≦	-	annealing, normalizing,	
	_	-	_	_	-	451≦	_	or normalizing, tempering	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	_	_	_	-	481≦	-		
- - - - $480 \le$ $183 \text{ HB} \le$ - - - - $412 \le$ -	-	-	_	_	-	440≦	183 HB ≦		
<u> </u>	_	-	_	_	-	480≦	183 HB ≦	1030~1150 C solution treatment	
	-	-	_	_	-	412≦	-		
481≦ -	_	-	-	_	-	481≦	-		
- $ -$	-	-	-	-	-	481≦	-	annealing, normalizing, or normalizing, tempering	
	_	-	_	_	-	481≦	_	,	
480≦	_	_	_	_	_	480≦	_		

Ther	name of work ma	terials				Chemical Co	mposition (%)			
ai	iu materiai Syrric	1015	С	Si	Mn	Р	S	Ni	Cr	Мо
Cast irons	Gray iron castings	FC150	-	-	-	-	—	-	—	—
		FC200	_	_	_	_	_	_	_	_
Touch cost Sphoroidal		FC250	_	_	_	_	_	_	_	_
		FC300	_	_	-	_	_	_	_	_
		FC350	_	_	_	_	_	_	_	_
Tough cast irons	Spheroidal graphite	FCD400	2.5≧	_	-	_	0.02≧	_	_	_
Ductile cast irons	Cast irons	FCD450	2.5≧	_	_	_	0.02≧	_	_	_
irons		FCD500	2.5≧	_	_	_	0.02≧	_	_	_
		FCD600	2.5≧	_	-	_	0.02≧	_	_	_
		FCD700	2.5≧	_	_	_	0.02≧	_	_	_
High carbon chromium bearing steels Free cutting carbon steels		SUJ2	0.95~1.10	0.15~0.35	0.50≧	0.025≧	0.025≧	_	1.30~1.60	_
		SUJ3	0.95~1.10	0.40~0.70	0.90~1.15	0.025≧	0.025≧	_	0.90~1.20	_
		SUJ4	0.95~1.10	0.15~0.35	0.50≧	0.025≧	0.025≧	_	1.30~1.60	0.10~0.25
		SUJ5	0.95~1.10	0.40~0.70	0.90~1.15	0.025≧	0.025≧	_	0.90~1.20	0.10~0.25
		SUM22	0.13≧	_	0.70~1.00	0.07~0.12	0.24~0.33	_	_	_
		SUM22L	0.13≧	_	0.70~1.00	0.07~0.12	0.24~0.33	_	_	_
		SUM31	0.14~0.20	_	1.00~1.30	0.040≧	0.08~0.13	_	_	_
		SUM31L	0.14~0.20	_	1.00~1.30	0.040≧	0.08~0.13	_	_	_
		SUM42	0.37~0.45	_	1.35~1.65	0.040≧	0.08~0.13	_	_	_
Rolled steels	s for general	SS330	—	_	—	0.050≧	0.050≧	_	—	_
structure		SS400	_	_	_	0.050≧	0.050≧	_	_	_
		SS490	_	_	_	0.050≧	0.050≧	_	_	_
		SS540	0.30≧	_	1.60≧	0.040≧	0.040≧	_	_	_
Cold-reduce	ed carbon steel	SPCC	0.15≧	_	0.60≧	0.100≧	0.035≧	_	_	_
Cold-reduced carbon steel sheets		SPCD	0.10≧	_	0.50≧	0.040≧	0.035≧	_		
		SPCE	0.08≧	_	0.45≧	0.030≧	0.030≧	_	_	_

Think threads with 722

	Chem	nical Compositi	on (%)			Mechanical Propert	y of Standard test block
W	V	Pb	Cu	others	Tensile strength (N/mm ²)	Hardness	Heat treatment of standard test block
-	_	-	_	_	127~186	210~241 HB	
_	_	-	_	_	167~235	217~255 HB	
_	_	-	_	_	216~275	229~269 HB	_
_	_	-	_	_	265~304	248~269 HB	
_	_	-	_	_	314~343	269~277 HB	
-	_	-	-	-	392≦	201 HB ≧	
-	_	-	_	_	441≦	143~217 HB	
_	_	-	_	_	490≦	170~241 HB	_
_	_	-	_	_	588≦	192~269 HB	-
_	_	-	_	_	686≦	229~302 HB	
_	_	-	_	_	-	201 HB ≧	
_	_	_	_	_	_	207 HB ≧	spheroidizing
-	_	-	_	_	-	201 HB ≧	spheroloizing
_	_	-	_	_	-	207 HB ≧	
_	_	-	_	_			
_	_	0.10~0.35	_	_			
_	_	_	_	-	_	_	_
_	_	0.10~0.35	_	-			
_	_	-	—	-			
_	_	-	_	-	330~430		
_	_	-	_	_	400~510	_	
_	_	-	_	_	490~610		-
	_			_	540≦		
_	_	-	_	-			
_	_	_	_	_	270≦	65 HRB ≧	Standerd thermal refining
_	_						

Technical nformation

The	name of work ma	terials					Chemical Co	omposition (%)			
a	nd material Symb	ols	Cu	Pb	Fe	Sn	Zn	AI	Mn	Ni	Р	Si
Copper	Oxygen free high	C1020	99.96≦	_	_	_	—	—	_	—	_	_
	tough pitch copper	C1100	99.90≦	_	_	_	_	_	_	_	_	_
	Phosophor deoxidized	C1201	99.90≦	_	_	_	_	_	_	_	0.004~0.015	_
	copper	C1221	99.75≦	-	_	_	_	_	-	_	0.004~0.040	-
Brass	Brass	C2600	68.5~71.5	0.05≧	0.05≧	—	remaining	—	_	—	—	_
		C2720	62.0~64.0	0.05≧	0.05≧	_	remaining	_	_	_	_	_
		C2801	59.0~62.0	0.10≧	0.07≧	_	remaining	_	-	_	_	-
	Free cutting brass	C3560	61.0~64.0	2.0~3.0	0.10≧	_	remaining	_	-	_	_	-
		C3713	58.0~62.0	1.0~2.0	0.10≧	_	remaining	_	_	_	_	_
Bras s castir	ıg	CAC201	83.0~88.0	0.5≧	0.2≧	0.1≧	11.0~17.0	0.2≧	_	0.2≧	_	_
		CAC203	58.0~64.0	0.5~3.0	0.8≧	1.0≧	30.0~41.0	0.5≧	_	1.0≧	_	_
Bronze cast	ing	CAC401	79.0~83.0	3.0~7.0	0.35≧	2.0~4.0	8.0~12.0	_	_	1.0≧	_	_
		CAC403	86.5~89.5	1.0≧	0.2≧	9.0~11.0	1.0~3.0	_	_	1.0≧	_	_
		CAC406	83.0~87.0	4.0~6.0	0.3≧	4.0~6.0	4.0~6.0	_	-	1.0≧	_	-
Aluminum Aluminum alloy rolling material	A1080	0.03≥	_	0 15≥	_	0.03≥	99.80≤	0.02≥	_	_	0 15>	
		A1080-H16	0.00 =		0.10		0.00	55.00≦	0.02 =			0.15
		A2017	35~15	_	0.7>	_	0.25>	remaining	0.40~1.0	_	_	0.20~0.8
		A2017-T3	0.0 4.0		0.7 =		0.20 =		0.40 1.0			0.20 0.0
		A3003	0.05~0.20	_	0.7≥	_	0 10≥	remaining	10~15	_	_	0.6≥
		A3003-H16	0.00 0.20		0.1 =		0.10	· •	110 110			0.0
		A5052	0.10>	_	0.4≧	_	0.10≧	remaining	0.10≧	_	_	0.25≧
		A5052-H16	0.10									
		A6061	0 15~0 40	_	0.7≥	_	0.25≥		0 15≥	_	_	0 40~0 8
		A6061-T6	0.10 0.40		0.7 =		0.20	. c	0.10			0.40 0.0
		A7075	12~20	_	0.50≥	_	51~61	remaining	0.30≥	_	_	0.40≥
		A7075-T6	1.2 2.0		0.00		0.1 0.1	· •	0.001			0.10
	Aluminum alloy casting	AC2A-F	3.0~4.5	0.15≥	0.8≥	0.05≥	0.55≥	remaining	0.55≥	0.30≥	_	4.0~6.0
		AC2A-T6										
		AC2B-F	2.0~4.0	0.20≧	1.0≧	0.10≧	1.0≧	remaining	0.50≧	0.35≧	_	5.0~7.0
		AC2B-T6										
		AC4B-F	20~40	0.20≥	1 0≥	0 10≥	1.0≥	remaining	0.50≥	0.35≥	_	7.0~10.0
		AC4B-T6										
		AC4C-F	0.20≥	0.05≥	0.50≥	0.05≥	0.30≥	remaining	0.60≥	0.05≥		6.5~7.5
		AC4C-T6	0.20 =	0.00 =	5.00 E				0.60≤	0.05≧	-	6.5~7.5
	Aluminum alloy diecasting	ADC10	2.0~4.0	0.2≧	1.3≧	0.2≧	1.0≧	remaining	0.5≧	0.5≧		7.5~9.5
		ADC12	1.5~3.5	0.2≧	1.3≧	0.2≧	1.0≧	remaining	0.5≧	0.5≧	-	9.6~12.0

		Cher	mical Compo	sition (%)				Mechanical Property o	f Standard test block
Ma				7. T: 1/7.	64	othoro	Tensile strength	Hardness	Heat treatment of
		_		∠r+rı,v,∠r —		others	215~275	55~100 HV	C1020P-14H
	_	_	_	_	_		215~275	55~100 HV	C1100P-¼H
_	_	_	_	_	_		215~275	55~100 HV	C1201P-¼H
	_	_	_	_	_	_	215~275	55~100 HV	С1221Р-¼Н
	_	_	_	_	_		325~410	75~125 HV	C2600P-1/4H
	_	_	_	_	_		325~410	75~125 HV	C2720P-¼H
	_	_	_		_		355~440	85~145 HV	C2801P-¼H
	_	_	_			_	345~430	_	C3560P-1/4H
	_	_	_	_	_	_	375~460		C3713P-¼H
	_		_				147≦	_	
	_	_	_	_	_		245≤		_
	_	_	_	_	_	impurity 2.0≥	167≤		
	_	_	_	_	_	impurity $1.0 \ge$	245≤		_
			_			impurity 2.0>	196<		
						impunty 2.0 =	54~94		annealing
0.02≧	-	0.03≧	-	_	-	-	98~137		thermal refining
							216>		annealing
0.40~0.8	0.10≧	0.15≧	_	-	-	0.15≧	373 <		
							9/~127		annealing
_	-	_	_	-	-	0.15≧	167~206		thermal refining
							177~216		
2.2~2.8	0.15~0.35	_	-	-	-	0.15≧	2550-204		thermal refining
							147>	_	
0.8~1.2	0.04~0.35	0.15≧	_	_	-	0.15≧	204 <		
							294 2	_	_
2.1~2.9	0.18~0.28	0.20≧	-	_	_	0.15≧	275		annealing
							530≧	about 75 UD	_
0.25≧	0.15≧	0.20≧	_	-	-	-	180 ≧	about 75 HB	casted
							275 ≥	about 90 HB	_
0.50≧	0.20≧	0.20≧	_	_	-	_	157≦	about 70 HB	casted
							245≦	about 90 HB	-
0.50≧	0.20≧	0.20≧	_	_	_	—	177≦	about 80 HB	casted
							245≦	about 100 HB	-
0.2~0.4	_	0.20≧	_	_	_	_	157≦	about 55 HB	casted
							226≦	about 85 HB	-
0.3≧	-	0.3≧	-	-	_		_	_	_
0.3≧	_	0.3≧	-	_	_	_			

Technical nformation

The n an	The name of work materials and material Symbols			Chemical Composition (%)										
			Cu	Pb	Fe	Sn	Zn	Al	Mn	Ni	Р	Si		
Magnesium alloy Casting	Magnesium alloy Casting alloy	MC1-F	0.10≧	—	_	_	2.5~3.5	5.3~6.7	0.15~0.6	0.01≧	_	0.30≧		
		MC1-T6	-	-	_	-	_	_	—	-	—	_		
		MC3-F	0.10≧	_	_	_	1.6~2.4	8.3~9.7	0.10~0.5	0.01≧	—	0.30≧		
	MC3-T6	—	_	_	-	_	_	_	_	_	_			
		MC6-T5	0.10≧	_	_		3.6~5.5	_	_	0.01≧	-	_		
	Magnesium alloy diecasting	MDC1A	0.10≧	—	—	_	0.35~1.0	8.3~9.7	0.15≦	0.03≧	_	0.50≧		
	, ,	MDC1B	0.35≧	_	0.03≧	_	0.35~1.0	8.3~9.7	0.13~0.5	0.03≧	_	0.50≧		
Zinc alloy	Zinc alloy diecasting	ZDC1	0.75~1.25	0.005≧	0.10≧	0.003≧	emaining	3.5~4.3	_	_	_	_		
		ZDC2	0.25≧	0.005≧	0.10≧	0.003≧	emaining	3.5~4.3	_	_	_			

Category and brevity code of thermoplastic resin

name	symbol	name	symbol
ASB resin	ASB	Polyethylene tephthalate	PETP
Acetal resin	POM	Polyethylene telephthalate	PBTP
Methacrylic resin	РММА	Polyimid	PI
Acetyl cellulose	CA	Polyphenylene oxide	PPO
Tetrafluoride ethylene resin	PTFE	Polyphenylene sulfide	PPS
Trifluoride ethylene resin	PCTEF	Polyalysulfone	PASF
Hexafluoride ethylene resin	PFEP	Polyarlylate	PAR
Fluoride vinyl resin	PVF	Polypropylene	PP
Fluoride vinyliden resin	PVDF	Polystyrene	PS
Ethylene tetrafluoride ethylene copolymer	ETFE	Polysulfone	PSF
lonomer	IO	Vinyl acetate resin	PVAC
Methyl Benzene polyme	MPP	Vinylidene chloride fiber	PVDC
Nylon (Polyamide)	PA	AS resin	SAN
Polycarbonate	PC	Vinyl chloride resin	PVC
Polyethylene	PE		

 \cdot Thermoplastic resin : As temperature rises, this resin becomes soft \rightarrow gammy \rightarrow fluidity liquid. For example, polystyrene (PS) is like glass at normal temperature. From 60°C and higher its elastic modules decreases, from 110°C it becomes gammy, and higher than 170°C, it becomes sticky paste.

Think threads with

		Cher	mical Compo	osition (%)				Mechanical Property o	f Standard test block
Ma		сс. т:	7.	Z* Ti \/ Z*	Cd	othoro	Tensile strength	Hardness	Heat treatment of
ivig	Cr		∠r	Zr+11, v, Zr	Ca	otriers			
remaining	_	-	—	_	_	—	177≦		Casted
-	_	-	-	-	-	_	235≦		_
remaining	_	-	-	-	-	_	157≦	_	Casted
-	-	-	-	-	-	_	235≦		_
remaining	-	-	0.50~1.0	-	-	_	235≦		_
remaining	_	-	-	-	-	_			
remaining	-	-	-	-	-	_	_	_	_
0.020~0.06	-	-	-	-	0.004≧	_			
0.020~0.06	-	-	-	-	0.004≧	_] _	_	_

Kinds of thermosetting plastics and symbols

name	symbol	name	symbol
Alkyd resin	Alk	Phenol resin	PF
Allyl resin	DAP	Unsaturated polyester resin	UP
Urea resin	UF	Silicone resin	SI
Melamine resin	MF	Polyurethane	PUR
Epoxy resin	EP		

• Thermosetting resin: Heated at 80 °C, it becomes sticky paste with fluidity. Then it is injected into the mould under pressure. Once hardened, the plastics does not get soft owing to polymer processing.

32. Materials used for Cutting Tools

Materials

We have been seeking the best materials used for cutting tools since the company establishment because the performance of tools are depending on the selection of materials used. Major materials used in our company are listed below.

Circumstance of tools' materials

Tensile strength, heat resistance, corrosion resistance and accuracy are the important features required of tool's materials. These requirements have been changing due to miniaturization and lightening of parts.

And manufacturing methods, as well, have been changing because of necessity of economical efficiency such as saving process/cycle time while parts become hard-to-machine type and their hardness increases.

As a result, the demand of industrial tools by users has become very tough.

For example, higher wear resistance and chipping resistance are required in the area of hardness, and heavy cutting process or high-speed cutting are required in the area of cycle time.

Moreover, product accuracy with its rigidity, laborsaving brought by uniformity, and systematic reliability are highly required.

Therefore, technological improvement of tool steels never stops developing so that they satisfy users needs.

OThe major materials used for taps are already listed in the chart, but those materials are ready to develop from conventional alloy tool steels and current high speed steel into next generation materials such as cemented carbide and cermet materials.

New materials are developed even in high-speed tool steel area, such as SKH51 and SKH58 from SKH2, and they are moving into high performance materials, such as high vanadium, cobalt, and powder HSS made of high vanadium and high cobalt contents.

OAs the material for round dies, were alloy tool steels mostly used because of the relationship with the use of adjustable round dies. However, for the hard-to-machine material. die material has been shifted into High Speed Steel.

OMajor materials for center drills and centering tools are high speed steel materials, but they have been shifting to cobalt type or even cemented carbide from SKH51.

We keep on seeking to develop our technology to meet user's needs and are trying to find the best materials in collaboration with steel manufacturers.

Classification	Currente e la					Chemical c	omposition				
Classification	Symbols	C	Si	Mn	Р	S	Cr	Мо	W	V	Co
W type HSS	SKH 2	0.73~0.83	≦0.45	≦0.4	≦0.030	≦0.030	3.80~4.50	—	17.20~18.70	1.00~1.20	_
	SKH 3	0.73~0.83	≦0.45	≦0.4	≦0.030	≦0.030	3.80~4.50	_	17.00~19.00	0.80~1.20	4.50~ 5.50
	SKH 4	0.73~0.83	≦0.45	≦0.4	≦0.030	≦0.030	3.80~4.50	_	17.00~19.00	1.00~1.50	9.00~11.00
	SKH10	1.45~1.60	≦0.45	≦0.4	≦0.030	≦0.030	3.80~4.50	—	11.50~13.50	4.20~5.20	4.20~ 5.20
Mo type HSS	SKH51	0.80~0.88	≦0.45	≦0.4	≦0.030	≦0.030	3.80~4.50	4.70~ 5.20	5.90~ 6.70	1.70~2.10	—
	SKH52	1.00~1.10	≦0.45	≦0.4	≦0.030	≦0.030	3.80~4.50	$5.50\sim~6.50$	5.90~ 6.70	2.30~2.80	_
	SKH53	1.15~1.25	≦0.45	≦0.4	≦0.030	≦0.030	3.80~4.50	4.70~ 5.20	5.90~ 6.70	2.70~3.20	_
	SKH54	1.25~1.40	≦0.45	≦0.4	≦0.030	≦0.030	3.80~4.50	4.20~ 5.00	5.20~ 6.00	3.70~4.20	_
	SKH55	0.87~0.95	≦0.45	≦0.4	≦0.030	≦0.030	3.80~4.50	4.70~ 5.20	5.90~ 6.70	1.70~2.10	4.50~ 5.00
	SKH56	0.85~0.95	≦0.45	≦0.4	≦0.030	≦0.030	3.80~4.50	4.70~ 5.20	5.90~ 6.70	1.70~2.10	7.00~ 9.00
	SKH57	1.20~1.35	≦0.45	≦0.4	≦0.030	≦0.030	3.80~4.50	3.20~ 3.90	9.00~10.00	3.00~3.50	9.50~10.50
	SKH58	0.95~1.05	≦0.7	≦0.4	≦0.030	≦0.030	3.50~4.50	8.20~ 9.20	1.50~ 2.10	1.70~2.20	-
	SKH59	1.05~1.15	≦0.7	≦0.4	≦0.030	≦0.030	3.50~4.50	9.00~10.00	1.20~ 1.90	0.90~1.30	7.50~ 8.50

Chemical composition of the materials specified in JIS

Classification	Sumbols	Usago		Cross chart	
Classification	Symbols	Usage	AISI	VDEH	ISO
W type HSS	SKH 2	Tools for general cutting and other kinds of tools.	T 1	S18-0-1	S1(HS18-0-1)
	SKH 3	Tools for high speed heavy cutting and other kinds of tools.	Τ4	S18-1-2-5	S7(HS18-1-1-5)
	SKH 4	Tools for cutting hard -to-machine materials and other kinds of tools.	Τ5	S18-1-2-10	S6 (HS18-0-1-10)
	SKH10	Tools for cutting ultra hard-to-machine materials and other kinds of tools.	T15	_	S9(HS 1 2-1-5-5)
Mo type HSS	SKH51	General cutting tools from which toughness is particularly required, and other kinds of tools.	M 2	S6-5-2	S4(HS6-5-2)
	SKH52	Tools for cutting high hardness material from which	M 3-1	_	_
	SKH53	comparatively high toughness is required and other kinds of tools.	M 3-2	S6-5-3	S5(HS6-5-3)
	SKH54	Tools for cutting ultra hard-to-machine materials and other kinds of tools.	M 4	-	_
	SKH55	High speed cutting tools from which comparatively high	M35	S6-5-2-5	S8(HS6-5-2-5)
	SKH56	toughness is required and other kinds of tools.	M36	-	_
	SKH57	Tools for cutting ultra hard-to-machine materials and other kinds of tools.	—	S10-4-3-10	S10(HS10-4-3-10)
	SKH58	General cutting tools from which toughness is particularly required, and other kinds of tools.	M 7	S2-9-2	S2(HS2-9-2)
	SKH59	High speed heavy cutting tools from which comparatively high toughness is required, and other kinds of tools.	M42	S2-10-1-8	S11(HS2-9-1-8)

The standard of HSS material is specified in JIS. But there are many HSS materials which standard is not specified in JIS. Recently even the kind of HSS-P is getting wider and various. Besides, SKH10, SKH53, SKH57 and their equivalents, such Hi vanadium/hi cobalt material as contains 4-12% vanadium and 8-11% cobalt is now being manufactured. Material engineering will be developed rapidly in the future. Under such situation, there can be many cases where JIS symbols are not used, and the use of larger classification and their symbols is getting popular.

33. Design of taps and dies

* Design of oil hole : refer to icons shown in product page

Product design

Simbols common in cutting tools and tool dimensions

Symbols were used by each tool manufacturer by refering to his own specification, resulting in confusion. In order to increas convenience at customers, small tool association and carbide tool association in Japan confirmed the common symbols. Yamawa is adopting these common symbols in this cataloge.

Overall length	Thead length	Chamfer length	Thread+Neck length	Outside dia.	Shank dia.	Length of square	Size of square
L	l	ℓ_{c}	ℓ n	D	Ds	lk	K

34. Design of center drills and centering tools

Think threads with YAMAWA

35. Design of dies

36. Design of taps for USA market and European market Design of taps for USA market

Technical nformation

733

36. Design of taps for USA market and European market

Design of taps for European market

